Ion valence-gated photochromism of an aza-crowned diarylethene

Fritzsche, M. (1867). Note sur les carbures d’hydrogène solides, tirés du goudron de houille. Comptes Rendus, 69(1), 1035–1037.

Google Scholar 

Hirshberg, Y. (1950). Photochromié dans la série de la bianthrone. Comptes Rendus, 231(2), 903–904.

CAS  Google Scholar 

Brown, G. H. (1971). Techniques of chemistry (Vol. 3). Wiley-Interscience.

Google Scholar 

Dürr, H., & Bouas-Laurent, H. (2003). Photochromism: Molecules and systems. Elsevier.

Google Scholar 

Crano, J. C., & Gugglielmetti, R. J. (1999). Organic photochromic and thermochromic compounds (Vols. 1–2). Plenum Press.

Feringa, B., & Browne, W. R. (2011). Molecular switches (2nd ed., Vols. 1–2). Wiley-VCH.

Irie, M., Yokoyama, Y., & Seki, T. (2013). New frontiers in photochromism. Springer.

Tian, H., & Zhang, J. (2016). Photochromic materials. Wiley-VCH.

Google Scholar 

Yokoyama, Y., & Nakatani, K. (2017). Photon-working switches. Springer.

Miyasaka, H., Matsuda, K., Abe, J., & Kawai, T. (2020). Photosynergetic responses in molecules and molecular aggregates. Springer.

Book  Google Scholar 

Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100(5), 1685–1716. https://doi.org/10.1021/cr980069d

Article  CAS  PubMed  Google Scholar 

Irie, M., Fukaminato, T., Matsuda, K., & Kobatake, S. (2014). Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chemical Reviews, 114(24), 12174–12277. https://doi.org/10.1021/cr500249p

Article  CAS  PubMed  Google Scholar 

Irie, M. (2021). Diarylethene molecular photoswitches: Concepts and functionalities. Wiley-VCH.

Book  Google Scholar 

Wezenberg, S. J. (2022). Photoswitchable molecular tweezers: Isomerization to control substrate binding, and what about vice versa? Chemical Communications, 58(79), 11045–11058. https://doi.org/10.1039/D2CC04329G

Article  CAS  PubMed  Google Scholar 

Bouas-Laurent, H., & Dürr, H. (2001). Organic photochromism (IUPAC technical report). Pure and Applied Chemistry, 73(4), 639–665. https://doi.org/10.1351/pac200173040639

Article  CAS  Google Scholar 

Yumoto, K., Irie, M., & Matsuda, K. (2008). Control of the photoreactivity of diarylethene derivatives by quaternarization of the pyridylethynyl group. Organic Letters, 10(10), 2051–2054. https://doi.org/10.1021/ol8005216

Article  CAS  PubMed  Google Scholar 

Mahvidi, S., Takeuchi, S., Kusumoto, S., Sato, H., Nakagawa, T., & Yokoyama, Y. (2016). Gated photochromic system of diarylethene with a photon-working key. Organic Letters, 18(19), 5042–5045. https://doi.org/10.1021/acs.orglett.6b02494

Article  CAS  PubMed  Google Scholar 

Hou, I.C.-Y., Berger, F., Narita, A., Müllen, K., & Hecht, S. (2020). Proton-gated ring-closure of a negative photochromic azulene-based diarylethene. Angewandte Chemie International Edition, 59(42), 18532–18536. https://doi.org/10.1002/anie.202007989

Article  CAS  PubMed  Google Scholar 

Liu, H.-H., & Chen, Y. (2010). Carbon dioxide and water as a key for unlocking photochromism of diarylethene derivative. Journal of Photochemistry and Photobiology, A: Chemistry, 215(1), 103–107. https://doi.org/10.1016/j.jphotochem.2010.08.002

Article  CAS  Google Scholar 

Song, B., Li, H., Yang, L., Zhang, F., & Xiang, J. (2012). Acid/base gated photochromism of diarylethenes with quinoline derivatives. Chinese Journal of Chemistry, 30(7), 1393–1398. https://doi.org/10.1002/cjoc.201200128

Article  CAS  Google Scholar 

Zhang, J., Tan, W., Meng, X., & Tian, H. (2009). Soft mimic gear-shift with a multi-stimulus modified diarylethene. Journal of Materials Chemistry, 19(32), 5726–5729. https://doi.org/10.1039/b908707a

Article  CAS  Google Scholar 

Wu, Y., Chen, S., Yang, Y., Zhang, Q., Xie, Y., Tian, H., & Zhu, W. (2012). A novel gated photochromic reactivity controlled by complexation/dissociation with BF3. Chemical Communications, 48(4), 528–530. https://doi.org/10.1039/C1CC15824D

Article  CAS  PubMed  Google Scholar 

Weng, T., Zhang, K., Wu, B., Chen, X., Zou, Q., Zeng, T., & Zhu, L. (2019). Orthogonally incorporating dual-fluorescence control into gated photochromism for multifunctional molecular switching. Chemistry—A European Journal, 25(67), 15281–15287. https://doi.org/10.1002/chem.201903759

Article  CAS  PubMed  Google Scholar 

Hu, X. G., Li, X. L., Kim, H. K., Ahn, K.-H., & Yang, S. I. (2020). Gated photochromic reactivity of azadithiacrown-ether functionalized diarylethene. Dyes and Pigments, 172, 107869. https://doi.org/10.1016/j.dyepig.2019.107869

Article  CAS  Google Scholar 

Hu, X. G., Li, X. L., Ahn, K.-H., & Yang, S. I. (2020). Synthesis and characterization of gated photochromic diarylethene functionalized with dipicolylamine. Dyes and Pigments, 176, 108202. https://doi.org/10.1016/j.dyepig.2020.108202

Article  CAS  Google Scholar 

Li, Y., Chen, X., Weng, T., Yang, J., Zhao, C., Wu, B., Zhang, M., Zhu, L., & Zou, Q. (2020). A monomolecular platform with varying gated photochromism. RSC Advances, 10(69), 42194–42199. https://doi.org/10.1039/d0ra08214g

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poon, P.C.-T., Lam, W. H., & Yam, V.W.-W. (2011). Gated photochromism in triarylborane-containing dithienylethenes: A new approach to a “lock-unlock” system. Journal of the American Chemical Society, 133(49), 19622–19625. https://doi.org/10.1021/ja208097a

Article  CAS  PubMed  Google Scholar 

Irie, M., Miyatake, O., & Uchida, K. (1992). Blocked photochromism of diarylethenes. Journal of the American Chemical Society, 114(22), 8715–8716. https://doi.org/10.1021/ja00048a063

Article  CAS  Google Scholar 

Irie, M., Miyatake, O., Uchida, K., & Eriguchi, T. (1994). Photochromic diarylethenes with intralocking arms. Journal of the American Chemical Society, 116(22), 9894–9900. https://doi.org/10.1021/ja00101a010

Article  CAS  Google Scholar 

Liu, K., Wen, Y., Shi, T., Li, F., Zhao, Y., Huang, C., & Yi, T. (2014). DNA gated photochromism and fluorescent switch in a thiazole orange modified diarylethene. Chemical Communications, 50(65), 9141–9144. https://doi.org/10.1039/c4cc02783c

Article  CAS  PubMed  Google Scholar 

Mao, Y., Liu, K., Lv, G., Wen, Y., Zhu, X., Lan, H., & Yi, T. (2015). CB[8] gated photochromism of a diarylethene derivative containing thiazole orange groups. Chemical Communications, 51(30), 6667–6670. https://doi.org/10.1039/c5cc01390a

Article  CAS  PubMed  Google Scholar 

Ohsumi, M., Fukaminato, T., & Irie, M. (2005). Chemical control of the photochromic reactivity of diarylethene derivatives. Chemical Communications, 2005(31), 3921–3923. https://doi.org/10.1039/b506801k

Article  CAS  Google Scholar 

Lemieux, V., & Branda, N. R. (2005). Reactivity-gated photochromism of 1,2-dithienylethenes for potential use in dosimetry applications. Organic Letters, 7(14), 2969–2972. https://doi.org/10.1021/ol050971p

Article  CAS  PubMed  Google Scholar 

Kühni, J., & Belser, P. (2007). Gated photochromism of 1,2-diarylethenes. Organic Letters, 9(10), 1915–1918. https://doi.org/10.1021/ol070487h

Article  CAS  PubMed  Google Scholar 

Li, X., Ma, Y., Wang, B., & Li, G. (2008). “Lock and key control” of photochromic reactivity by controlling the oxidation/reduction state. Organic Letters, 10(16), 3639–3642. https://doi.org/10.1021/ol8013655

Article  CAS  PubMed  Google Scholar 

Nourmohammadian, F., Wu, T., & Branda, N. R. (2011). A ‘chemically-gated’ photoresponsive compound as a visible detector for organophosphorus nerve agents. Chemical Communications, 47(39), 10954–10956. https://doi.org/10.1039/c1cc13685b

Article  CAS  PubMed  Google Scholar 

Song, B., Li, H., Yang, L., Zhao, C., Sai, H., Zhang, S., Zhang, F., & Xiang, J. (2012). Esterifiable/hydrolytic control of photochromism of diarylethenes with 8-hydroxyquinoline derivatives. Journal of Photochemistry and Photobiology, A: Chemistry, 241(1), 21–25. https://doi.org/10.1016/j.jphotochem.2012.05.005

Article  CAS  Google Scholar 

Asadirad, A. M., Boutault, S., Emo, Z., & Branda, N. R. (2014). Controlling a polymer adhesive using light and a molecular switch. Journal of the American Chemical Society, 136(8), 3024–3027. https://doi.org/10.1021/ja500496n

Article  CAS  PubMed  Google Scholar 

Kida, J., Imato, K., Goseki, R., Aoki, D., Morimoto, M., & Otsuka, H. (2018). The photoregulation of a mechanochemical polymer scission. Nature Communications, 9, 3504. https://doi.org/10.1038/s41467-018-05996-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barber, R. W., McFadden, M. E., Hu, X., & Robb, M. J. (2019). Mechanochemically gated photoswitching: Expanding the scope of polymer mechanochromism. Synlett, 30(15), 1725–1732. https://doi.org/10.1055/s-0037-1611858

Article  CAS  Google Scholar 

Irie, M., & Sayo, K. (1992). Solvent effects on the photochromic reactions of diarylethene derivatives. Journal of Physical Chemistry, 96(19), 7671–7674. https://doi.org/10.1021/j100198a035

Article  CAS  Google Scholar 

Ohsumi, M., Hazama, M., Fukaminato, T., & Irie, M. (2008). Photocyclization reaction of a diarylmaleimide derivative in polar solvents. Chemical Communications, 2008(28), 3281–3283. https://doi.org/10.1039/B802780C

Article 

留言 (0)

沒有登入
gif