Easy and versatile cellulosic support inhibiting broad spectrum strains: synergy between photodynamic antimicrobial therapy and polymyxin B

Bolognia, J. L., Jorizzo, J. L., & Schaffer, J. V. (2012). Dermatology: 2-Volume set (3rd ed.). Elsevier.

Google Scholar 

Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial biofilms in the food industry—A comprehensive review. International Journal of Environmental Research and Public Health, 18(4), 2014. https://doi.org/10.3390/ijerph18042014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balikci, E., Yilmaz, B., Tahmasebifar, A., Baran, E. T., & Kara, E. (2021). Surface modification strategies for hemodialysis catheters to prevent catheter-related infections: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(3), 314–327. https://doi.org/10.1002/jbm.b.34701

Article  CAS  PubMed  Google Scholar 

Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37–54. https://doi.org/10.1016/j.actbio.2018.10.036

Article  CAS  PubMed  Google Scholar 

Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089

Article  CAS  PubMed  Google Scholar 

Kim, B. H., Seo, H. S., Jung, S. C., Ohk, S. H., Kim, K. H., Cho, D. L., & Ko, Y. M. (2011). Study in bactericidal properties of chlorhexidine grafting on the modified titanium. Journal of Nanoscience and Nanotechnology, 11(2), 1530–1533. https://doi.org/10.1166/jnn.2011.3314

Article  CAS  PubMed  Google Scholar 

Wang, S., Yang, Y., Li, W., Wu, Z., Li, J., Xu, K., Zhang, W., Zheng, X., & Chen, J. (2019). Study of the relationship between chlorhexidine-grafted amount and biological performances of micro/nanoporous titanium surfaces. ACS Omega, 4(19), 18370–18380. https://doi.org/10.1021/acsomega.9b02614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mei, L., Ren, Y., Loontjens, T. J. A., van der Mei, H. C., & Busscher, H. J. (2012). Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin. The International Journal of Artificial Organs, 35(10), 854–863. https://doi.org/10.5301/ijao.5000149

Article  CAS  PubMed  Google Scholar 

Makvandi, P., Jamaledin, R., Jabbari, M., Nikfarjam, N., & Borzacchiello, A. (2018). Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dental Materials, 34(6), 851–867. https://doi.org/10.1016/j.dental.2018.03.014

Article  CAS  PubMed  Google Scholar 

Zubris, D. L., Minbiole, K. P. C., & Wuest, W. M. (2017). Polymeric quaternary ammonium compounds: Versatile antimicrobial materials. Current Topics in Medicinal Chemistry, 17(3), 305–318.

Article  CAS  PubMed  Google Scholar 

Huang, Z., Nazifi, S., Cheng, K., Karim, A., & Ghasemi, H. (2021). Scalable inter-diffused zwitterionic polyurethanes for durable antibacterial coatings. Chemical Engineering Journal, 422, 130085. https://doi.org/10.1016/j.cej.2021.130085

Article  CAS  Google Scholar 

Li, D., Wei, Q., Wu, C., Zhang, X., Xue, Q., Zheng, T., & Cao, M. (2020). Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Advances in Colloid and Interface Science, 278, 102141. https://doi.org/10.1016/j.cis.2020.102141

Article  CAS  PubMed  Google Scholar 

Stillger, L., & Müller, D. (2022). Peptide-coating combating antimicrobial contaminations: A review of covalent immobilization strategies for industrial applications. Journal of Materials Science, 57(24), 10863–10885. https://doi.org/10.1007/s10853-022-07266-w

Article  CAS  Google Scholar 

Nicolas, M., Beito, B., Oliveira, M., Tudela Martins, M., Gallas, B., Salmain, M., Boujday, S., & Humblot, V. (2022). Strategies for antimicrobial peptides immobilization on surfaces to prevent biofilm growth on biomedical devices. Antibiotics, 11(1), 13. https://doi.org/10.3390/antibiotics11010013

Article  CAS  Google Scholar 

Rizwan, M., Alias, R., Zaidi, U. Z., Mahmoodian, R., & Hamdi, M. (2018). Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. Journal of Biomedical Materials Research. Part A, 106(2), 590–605. https://doi.org/10.1002/jbm.a.36259

Article  CAS  PubMed  Google Scholar 

Birkett, M., Dover, L., Cherian Lukose, C., Wasy Zia, A., Tambuwala, M. M., & Serrano-Aroca, Á. (2022). Recent advances in metal-based antimicrobial coatings for high-touch surfaces. International Journal of Molecular Sciences, 23(3), 1162. https://doi.org/10.3390/ijms23031162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zainul Armir, N. A., Zulkifli, A., Gunaseelan, S., Palanivelu, S. D., Salleh, K. M., Che Othman, M. H., & Zakaria, S. (2021). Regenerated cellulose products for agricultural and their potential: A review. Polymers, 13(20), 3586. https://doi.org/10.3390/polym13203586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu, H., Li, X., Liu, Y., Luo, L., Duan, B., & Zhang, R. (2022). Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process. Carbohydrate Polymers, 296, 119942. https://doi.org/10.1016/j.carbpol.2022.119942

Article  CAS  PubMed  Google Scholar 

Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2020.00392

Article  PubMed  PubMed Central  Google Scholar 

Borbély, É. L. (2008). The new generation of regenerated cellulose. Acta Polytechnica Hungarica, 5(3), 11–18.

Google Scholar 

Vatansever, F., de Melo, W. C. M. A., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N. A., Yin, R., Tegos, G. P., & Hamblin, M. R. (2013). Antimicrobial strategies centered around reactive oxygen species—Bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiology Reviews, 37(6), 955–989. https://doi.org/10.1111/1574-6976.12026

Article  CAS  PubMed  Google Scholar 

Wang, K.-K., Song, S., Jung, S.-J., Hwang, J.-W., Kim, M.-G., Kim, J.-H., Sung, J., Lee, J.-K., & Kim, Y.-R. (2020). Lifetime and diffusion distance of singlet oxygen in air under everyday atmospheric conditions. Physical Chemistry Chemical Physics: PCCP, 22(38), 21664–21671. https://doi.org/10.1039/D0CP00739K

Article  CAS  PubMed  Google Scholar 

Fu, X., Fang, Y., & Yao, M. (2013). Antimicrobial photodynamic therapy for methicillin-resistant staphylococcus aureus infection. BioMed Research International, 2013, 1–9. https://doi.org/10.1155/2013/159157

Article  CAS  Google Scholar 

Alves, E., Costa, L., Carvalho, C. M., Tomé, J. P., Faustino, M. A., Neves, M. G., Tomé, A. C., Cavaleiro, J. A., Cunha, Â., & Almeida, A. (2009). Charge effect on the photoinactivation of gram-negative and gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiology, 9, 70. https://doi.org/10.1186/1471-2180-9-70

Article  PubMed  PubMed Central  Google Scholar 

Le Guern, F., Sol, V., Ouk, C., Arnoux, P., Frochot, C., & Ouk, T.-S. (2017). Enhanced photobactericidal and targeting properties of a cationic porphyrin following the attachment of polymyxin B. Bioconjugate Chemistry, 28(9), 2493–2506. https://doi.org/10.1021/acs.bioconjchem.7b00516

Article  CAS  PubMed  Google Scholar 

Dosselli, R., Tampieri, C., Ruiz-González, R., De Munari, S., Ragàs, X., Sánchez-García, D., Agut, M., Nonell, S., Reddi, E., & Gobbo, M. (2013). Synthesis, characterization, and photoinduced antibacterial activity of porphyrin-type photosensitizers conjugated to the antimicrobial peptide apidaecin 1b. Journal of Medicinal Chemistry, 56(3), 1052–1063. https://doi.org/10.1021/jm301509n

Article  CAS  PubMed  Google Scholar 

Gourlot, C., Gosset, A., Glattard, E., Aisenbrey, C., Rangasamy, S., Rabineau, M., Ouk, T.-S., Sol, V., Lavalle, P., Gourlaouen, C., Ventura, B., Bechinger, B., & Heitz, V. (2022). Antibacterial photodynamic therapy in the near-infrared region with a targeting antimicrobial peptide connected to a π-extended porphyrin. ACS Infectious Diseases, 8(8), 1509–1520. https://doi.org/10.1021/acsinfecdis.2c00131

Article  CAS  PubMed  Google Scholar 

Bellin, J. S., Lutwick, L., & Jonas, B. (1969). Effects of photodynamic action on E. coli. Archives of Biochemistry and Biophysics, 132(1), 157–164. https://doi.org/10.1016/0003-9861(69)90348-8

Article  CAS  PubMed  Google Scholar 

Krouit, M., Granet, R., Branland, P., Verneuil, B., & Krausz, P. (2006). New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters. Bioorganic & Medicinal Chemistry Letters, 16(6), 1651–1655. https://doi.org/10.1016/j.bmcl.2005.12.008

Article  CAS  Google Scholar 

Krouit, M., Granet, R., & Krausz, P. (2008). Photobactericidal plastic films based on cellulose esterified by chloroacetate and a cationic porphyrin. Bioorganic & Medicinal Chemistry, 16(23), 10091–10097. https://doi.org/10.1016/j.bmc.2008.10.010

Article  CAS  Google Scholar 

Ringot, C., Saad, N., Granet, R., Bressollier, P., Sol, V., & Krausz, P. (2010). Meso-functionalized aminoporphyrins as efficient agents for photo -antibacterial surfaces. Journal of Porphyrins and Phthalocyanines, 14, 926–931. https://doi.org/10.1142/S1088424610002719

Article  Google Scholar 

Feese, E., Sadeghifar, H., Gracz, H. S., Argyropoulos, D. S., & Ghiladi, R. A. (2011). Photobactericidal porphyrin-cellulose nanocrystals: Synthesis, characterization, and antimicrobial properties. Biomacromolecules, 12(10), 3528–3539.

Article  CAS  PubMed  Google Scholar 

Chen, W., Chen, J., Li, L., Wang, X., Wei, Q., Ghiladi, R. A., & Wang, Q. (2019). Wool/acrylic blended fabrics as next-generation photodynamic antimicrobial materials. ACS Applied Materials & Interfaces, 11, 29557–29568.

Article 

留言 (0)

沒有登入
gif