Dithiothreitol reduces oxidative stress and necrosis caused by ultraviolet A radiation in L929 fibroblasts

Wierzbicka, J. M., Żmijewski, M. A., Piotrowska, A., Nedoszytko, B., Lange, M., Tuckey, R. C., & Slominski, A. T. (2016). Bioactive forms of vitamin D selectively stimulate the skin analog of the hypothalamus-pituitary-adrenal axis in human epidermal keratinocytes. Molecular and Cellular Endocrinology, 437, 312–322. https://doi.org/10.1016/j.mce.2016.08.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naffa, R., Maidment, C., Ahn, M., Ingham, M., Hinkley, S., & Norris, G. (2019). Molecular and structural insights into skin collagen reveals several factors that influence its architecture. International Journal of Biological Macromolecules, 128, 509–520. https://doi.org/10.1016/j.ijbiomac.2019.01.151

Article  CAS  PubMed  Google Scholar 

Yadav, N., & Banerjee, M. (2018). Epidemiological aspects of photocarcinogenesis. Photocarcinogenesis & Photoprotection. https://doi.org/10.1007/978-981-10-5493-8_6

Article  Google Scholar 

Battie, C., Jitsukawa, S., Bernerd, F., Del Bino, S., Marionnet, C., & Verschoore, M. (2014). New insights in photoaging, UVA induced damage and skin types. Experimental Dermatology, 23, 7–12. https://doi.org/10.1111/exd.12388

Article  CAS  PubMed  Google Scholar 

Ray, R. S., Haldar, C., Dwivedi, A., Agarwal, N., & Singh, J. (2018). Photocarcinogenesis and photoprotection. Photocarcinogenesis & Photoprotection. https://doi.org/10.1007/978-981-10-5493-8

Article  Google Scholar 

Reichrath, J. (2006). The challenge resulting from positive and negative effects of sunlight: How much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer? Progress in Biophysics and Molecular Biology, 92, 9–16. https://doi.org/10.1016/j.pbiomolbio.2006.02.010

Article  CAS  PubMed  Google Scholar 

Parzonko, A., & Kiss, A. K. (2019). Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA-radiation. Phytomedicine, 57, 215–222. https://doi.org/10.1016/j.phymed.2018.12.022

Article  CAS  PubMed  Google Scholar 

Young, A. R., Claveau, J., & Rossi, A. B. (2017). Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. Journal of the American Academy of Dermatology, 76, 100–109. https://doi.org/10.1016/j.jaad.2016.09.038

Article  CAS  Google Scholar 

Yeager, D. G., & Lim, H. W. (2019). What’s new in photoprotection: A review of new concepts and controversies. Dermatologic Clinics, 37, 149–157. https://doi.org/10.1016/j.det.2018.11.003

Article  CAS  PubMed  Google Scholar 

Liu, L., Trimarchi, J. R., & Keefe, D. L. (1999). Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol. Biology of Reproduction, 61, 1162–1169. https://doi.org/10.1095/biolreprod61.4.1162

Article  CAS  PubMed  Google Scholar 

Harber, L. C., Hsu, J. M. D., Hsu, H. M. S., & Goldstein, B. D. (1972). Studies of photoprotection against porphyrin photosensitization using dithiothreitol and glycerol. The Journal of Investigative Dermatology, 58, 373–380. https://doi.org/10.1111/1523-1747.ep12540600

Article  CAS  PubMed  Google Scholar 

Cleland, W. W. (1964). Dithiothreitol, a new protective reagent for SH groups. Biochemistry, 3, 480–482. https://doi.org/10.1021/bi00892a002

Article  CAS  PubMed  Google Scholar 

Kükürt, A., Gelen, V., Başer, O. F., Deveci, H. A., & Karapehlivan, M. (2021). Thiols: Role in oxidative stress-related disorders. Accenting Lipid Peroxidation. https://doi.org/10.5772/intechopen.96682

Article  Google Scholar 

Ma, W. X., Li, C. Y., Tao, R., Wang, X. P., & Yan, L. J. (2020). Reductive stress-induced mitochondrial dysfunction and cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2020, 5136957. https://doi.org/10.1155/2020/5136957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biologie et Médecine, 26, 1211–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Article  Google Scholar 

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. https://doi.org/10.1038/1811199a0

Article  ADS  CAS  Google Scholar 

Oliveira, M. M., Ratti, B. A., Daré, R. G., Silva, S. O., Truiti, M. D. C. T., Ueda-Nakamura, T., Auzély-Velty, R., & Nakamura, C. V. (2019). Dihydrocaffeic acid prevents UVB-induced oxidative stress leading to the inhibition of apoptosis and MMP-1 expression via p38 signaling pathway. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2019/2419096

Article  PubMed  PubMed Central  Google Scholar 

Daré, R. G., Nakamura, C. V., Ximenes, V. F., & Lautenschlager, S. O. S. (2020). Tannic acid, a promising anti-photoaging agent: Evidences of its antioxidant and anti-wrinkle potentials, and its ability to prevent photodamage and MMP-1 expression in L929 fibroblasts exposed to UVB. Free Radical Biology & Medicine, 160, 342–355. https://doi.org/10.1016/j.freeradbiomed.2020.08.019

Article  CAS  Google Scholar 

Souza, R. O., Alves, G. A. D., Forte, A. L. S. A., Marquele-Oliveira, F., Silva, D. F., Rogez, H., & Fonseca, M. J. V. (2017). Byrsonima crassifolia extract and fraction prevent UVB-induced oxidative stress in keratinocytes culture and increase antioxidant activity on skin. Industrial Crops and Products, 108, 485–494. https://doi.org/10.1016/j.indcrop.2017.07.015

Article  CAS  Google Scholar 

Borenfreund, E., & Puerner, J. A. (1985). Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24, 119–124. https://doi.org/10.1016/0378-4274(85)90046-3

Article  CAS  PubMed  Google Scholar 

Mikuła-Pietrasik, J., Kuczmarska, A., Rubiś, B., Filas, V., Murias, M., Zieliński, P., Piwocka, K., & Ksiazek, K. (2012). Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radical Biology & Medicine, 52, 2234–2245. https://doi.org/10.1016/j.freeradbiomed.2012.03.014

Article  CAS  Google Scholar 

Daré, R. G., Oliveira, M. M., Truiti, M. C. T., Nakamura, C. V., Ximenes, V. F., & Lautenschlager, S. O. S. (2020). Abilities of protocatechuic acid and its alkyl esters, ethyl and heptyl protocatechuates, to counteract UVB-induced oxidative injuries and photoaging in fibroblasts L929 cell line. Journal of Photochemistry and Photobiology B: Biology. https://doi.org/10.1016/j.jphotobiol.2019.111771

Article  PubMed  Google Scholar 

Zheng, J., Piao, M. J., Kim, K. C., Yao, C. W., Cha, J. W., Shin, J. H., Yoo, S. J., & Hyun, J. W. (2014). Photo-protective effect of americanin B against ultraviolet B-induced damage in cultured human keratinocytes. Environmental Toxicology and Pharmacology, 38, 891–900. https://doi.org/10.1016/j.etap.2014.08.017

Article  CAS  PubMed  Google Scholar 

Lim, H. W., Arellano-Mendoza, M. I., & Stengel, F. (2017). Current challenges in photoprotection. Journal of the American Academy of Dermatology, 76, S91–S99. https://doi.org/10.1016/j.jaad.2016.09.040

Article  CAS  PubMed  Google Scholar 

Murray, H. C., Maltby, V. E., Smith, D. W., & Bowden, N. A. (2016). Nucleotide excision repair deficiency in melanoma in response to UVA. Experimental Hematology & Oncology, 5, 6. https://doi.org/10.1186/s40164-016-0035-4

Article  CAS  Google Scholar 

Duque, L., Bravo, K., & Osorio, E. (2017). A holistic anti-aging approach applied in selected cultivated medicinal plants: A view of photoprotection of the skin by different mechanisms. Industrial Crops and Products, 97, 431–439. https://doi.org/10.1016/j.indcrop.2016.12.059

Article  CAS  Google Scholar 

Nile, S. H., Nile, A. S., Keum, Y. S., & Sharma, K. (2017). Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chemistry, 235, 119–126. https://doi.org/10.1016/j.foodchem.2017.05.043

Article  CAS  PubMed  Google Scholar 

Jiang, H., Ahmed, C. M. S., Canchola, A., Chen, J. Y., & Lin, Y. H. (2019). Use of dithiothreitol assay to evaluate the oxidative potential of atmospheric aerosols. Atmosphere, 10(10), 571. https://doi.org/10.3390/atmos10100571

Article  ADS  CAS  Google Scholar 

Matsui, Y. S. T., Kitagawa, Y., & Okumura, M. (2014). Accurate standard hydrogen electrode potential and applications to the redox potentials of vitamin C and NAD/NADH. Journal of Physical Chemistry A, 119, 369–376. https://doi.org/10.1021/jp508308y

Article  ADS  CAS  Google Scholar 

Girotti, S., Fini, F., Ferri, E., Budini, R., Piazzi, S., & Cantagalli, D. (2000). Determination of superoxide dismutase in erythrocytes by a chemiluminescent assay. Talanta, 51, 685–692. https://doi.org/10.1016/S0039-9140(99)00332-X

Article  CAS  PubMed  Google Scholar 

den Hartog, A. G. J., Boots, A. W., Adam-Perrot, A., Brouns, F., Verkooijen, I. W., Weseler, A. R., & Haenen, G. R. (2010). Erythritol is a sweet antioxidant. Nutrition, 26, 449–458. https://doi.org/10.1016/j.nut.2009.05.004

Article  CAS  Google Scholar 

Romanhole, R. C., Ataide, J. A., Moriel, P., & Mazzola, P. G. (2015). Update on ultraviolet A and B radiation generated by the sun and artificial lamps and their effects on skin. International Journal of Cosmetic Science, 37, 366–370. https://doi.org/10.1111/ics.12219

Article  CAS  PubMed  Google Scholar 

Moreno, N. C., Garcia, C. C. M., Munford, V., Rocha, C. R. R., Pelegrini, A. L., Corradi, C., Sarasin, A., & Menck, C. F. M. (2019). The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radical Biology & Medicine, 131, 432–442. https://doi.org/10.1016/j.freeradbiomed.2018.12.012

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif