Synergistic effect of adavosertib and fimepinostat on acute myeloid leukemia cells by enhancing the induction of DNA damage

Bhansali RS, Pratz KW, Lai C (2023) Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol 16(1):29. https://doi.org/10.1186/s13045-023-01424-6

Article  PubMed  PubMed Central  Google Scholar 

Matheson CJ, Backos DS, Reigan P (2016) Targeting WEE1 Kinase in Cancer. Trends Pharmacol Sci 37(10):872–881. https://doi.org/10.1016/j.tips.2016.06.006

Article  PubMed  CAS  Google Scholar 

Qi W, Xie C, Li C, Caldwell JT, Edwards H, Taub JW, Wang Y, Lin H, Ge Y (2014) CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells. J Hematol Oncol 7:53. https://doi.org/10.1186/s13045-014-0053-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen G, Zhang B, Xu H, Sun Y, Shi Y, Luo Y, Jia H, Wang F (2017) Suppression of Sirt1 sensitizes lung cancer cells to WEE1 inhibitor MK-1775-induced DNA damage and apoptosis. Oncogene 36(50):6863–6872. https://doi.org/10.1038/onc.2017.297

Article  PubMed  CAS  Google Scholar 

Hauge S, Macurek L (2019) p21 limits S phase DNA damage caused by the Wee1 inhibitor MK1775. 18(8):834–847. https://doi.org/10.1080/15384101.2019.1593649

Fu S, Wang Y, Keyomarsi K, Meric-Bernstam F, Meric-Bernstein F (2018) Strategic development of AZD1775, a Wee1 kinase inhibitor, for cancer therapy. Expert Opin Investig Drugs 27(9):741–751. https://doi.org/10.1080/13543784.2018.1511700

Article  PubMed  CAS  Google Scholar 

Shafer D, Kagan AB, Rudek MA, Kmieciak M, Tombes MB, Shrader E, Bandyopadhyay D, Hudson D, Sankala H, Weir C, Lancet JE, Grant S (2023) Phase 1 study of belinostat and adavosertib in patients with relapsed or refractory myeloid malignancies. Cancer Chemother Pharmacol 91(3):281–290. https://doi.org/10.1007/s00280-023-04511-0

Article  PubMed  CAS  Google Scholar 

Schutte T, Embaby A, Steeghs N, van der Mierden S, van Driel W, Rijlaarsdam M, Huitema A, Opdam F (2023) Clinical development of WEE1 inhibitors in gynecological cancers: A systematic review. Cancer Treat Rev 115:102531. https://doi.org/10.1016/j.ctrv.2023.102531

Article  PubMed  CAS  Google Scholar 

Porter CC, Kim J, Fosmire S, Gearheart CM, van Linden A, Baturin D, Zaberezhnyy V, Patel PR, Gao D, Tan AC, DeGregori J (2012) Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia. Leukemia 26(6):1266–1276. https://doi.org/10.1038/leu.2011.392

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qi W, Xu X, Wang M, Li X, Wang C, Sun L, Zhao D, Sun L (2019) Inhibition of Wee1 sensitizes AML cells to ATR inhibitor VE-822-induced DNA damage and apoptosis. Biochem Pharmacol 164:273–282. https://doi.org/10.1016/j.bcp.2019.04.022

Article  PubMed  CAS  Google Scholar 

Garcia TB, Snedeker JC, Baturin D, Gardner L, Fosmire SP, Zhou C, Jordan CT, Venkataraman S, Vibhakar R, Porter CC (2017) A Small-Molecule Inhibitor of WEE1, AZD1775, Synergizes with Olaparib by Impairing Homologous Recombination and Enhancing DNA Damage and Apoptosis in Acute Leukemia. Mol Cancer Ther 16(10):2058–2068. https://doi.org/10.1158/1535-7163.mct-16-0660

Article  PubMed  PubMed Central  CAS  Google Scholar 

Okabe S, Tanaka Y, Moriyama M, Gotoh A (2023) WEE1 and PARP-1 play critical roles in myelodysplastic syndrome and acute myeloid leukemia treatment. Cancer Cell Int 23(1):128. https://doi.org/10.1186/s12935-023-02961-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qi W, Zhang W, Edwards H, Chu R, Madlambayan GJ, Taub JW, Wang Z, Wang Y, Li C, Lin H, Ge Y (2015) Synergistic anti-leukemic interactions between panobinostat and MK-1775 in acute myeloid leukemia ex vivo. Cancer Biol Ther 16(12):1784–1793. https://doi.org/10.1080/15384047.2015.1095406

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhou L, Zhang Y, Chen S, Kmieciak M, Leng Y, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Dai Y, Grant S (2015) A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia 29(4):807–818. https://doi.org/10.1038/leu.2014.296

Article  PubMed  CAS  Google Scholar 

Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M, Zifcak B, Ma AW, DellaRocca S, Borek M, Zhai HX, Cai X, Voi M (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clinical cancer research : an official journal of the American Association for Cancer Research 18(15):4104–4113. https://doi.org/10.1158/1078-0432.ccr-12-0055

Article  PubMed  CAS  Google Scholar 

Li X, Su Y, Madlambayan G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Ma J, Knight T, Wang G, Wang Y, Yang J, Taub JW, Lin H, Ge Y (2019) Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Haematologica 104(11):2225–2240. https://doi.org/10.3324/haematol.2018.201343

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X, Su Y, Hege K, Madlambayan G, Edwards H, Knight T, Polin L, Kushner J, Dzinic SH, White K, Yang J, Miller R, Wang G, Zhao L, Wang Y, Lin H, Taub JW, Ge Y (2021) The HDAC and PI3K dual inhibitor CUDC-907 synergistically enhances the antileukemic activity of venetoclax in preclinical models of acute myeloid leukemia. Haematologica 106(5):1262–1277. https://doi.org/10.3324/haematol.2019.233445

Article  PubMed  CAS  Google Scholar 

Qiao X, Ma J, Knight T, Su Y, Edwards H, Polin L, Li J, Kushner J, Dzinic SH, White K, Wang J, Lin H, Wang Y, Wang L, Wang G, Taub JW, Ge Y (2021) The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML. Blood Cancer J 11(6):111. https://doi.org/10.1038/s41408-021-00502-7

Article  PubMed  PubMed Central  Google Scholar 

Hege Hurrish K, Qiao X, Li X, Su Y, Carter J, Ma J, Kalpage HA, Hüttemann M, Edwards H, Wang G, Kim S, Dombkowski A, Bao X, Li J, Taub JW, Ge Y (2022) Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia. Biochem Pharmacol 205:115283. https://doi.org/10.1016/j.bcp.2022.115283

Article  CAS  Google Scholar 

Oki Y, Kelly KR, Flinn I, Patel MR, Gharavi R, Ma A, Parker J, Hafeez A, Tuck D, Younes A (2017) CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica 102(11):1923–1930. https://doi.org/10.3324/haematol.2017.172882

Article  PubMed Central  CAS  Google Scholar 

Landsburg DJ, Barta SK, Ramchandren R, Batlevi C, Iyer S, Kelly K, Micallef IN, Smith SM, Stevens DA, Alvarez M, Califano A, Shen Y, Bosker G, Parker J, Soikes R, Martinez E, von Roemeling R, Martell RE, Oki Y (2021) Fimepinostat (CUDC-907) in patients with relapsed/refractory diffuse large B cell and high-grade B-cell lymphoma: report of a phase 2 trial and exploratory biomarker analyses. Br J Haematol 195(2):201–209. https://doi.org/10.1111/bjh.17730

Article  CAS  Google Scholar 

O’Connor MJ (2015) Targeting the DNA Damage Response in Cancer. Mol Cell 60(4):547–560. https://doi.org/10.1016/j.molcel.2015.10.040

Article  PubMed  CAS  Google Scholar 

Uphoff CC, Drexler HG (2005) Detection of mycoplasma contaminations. Methods in molecular biology (Clifton, NJ) 290:13–23. https://doi.org/10.1385/1-59259-838-2:013

Article  CAS  Google Scholar 

Taub JW, Matherly LH, Stout ML, Buck SA, Gurney JG, Ravindranath Y (1996) Enhanced metabolism of 1-beta-D-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood 87(8):3395–3403

Article  PubMed  CAS  Google Scholar 

Li X, Su Y, Hege K, Madlambayan G, Edwards H, Knight T, Polin L, Kushner J, Dzinic SH, White K, Yang J, Miller R, Wang G, Zhao L, Wang Y, Lin H, Taub JW, Ge Y (2020) The HDAC and PI3K dual inhibitor CUDC-907 synergistically enhances the antileukemic activity of venetoclax in preclinical models of acute myeloid leukemia. Haematologica: haematol 2019. 233445. https://doi.org/10.3324/haematol.2019.233445

Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clinical cancer research : an official journal of the American Association for Cancer Research 16(2):376–383. https://doi.org/10.1158/1078-0432.ccr-09-1029

Article  PubMed  CAS  Google Scholar 

Sun K, Atoyan R, Borek MA, Dellarocca S, Samson ME, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL, Fattaey A, Wang J (2017) Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers. Mol Cancer Ther 16(2):285–299. https://doi.org/10.1158/1535-7163.mct-16-0390

Article  PubMed  CAS  Google Scholar 

Fu XH, Zhang X, Yang H, Xu XW, Hu ZL, Yan J, Zheng XL, Wei RR, Zhang ZQ, Tang SR, Geng MY, Huang X (2019) CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacol Sin 40(5):677–688. https://doi.org/10.1038/s41401-018-0108-5

Article  PubMed  CAS  Google Scholar 

Li X, Su Y, Madlambayan G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Ma J, Knight T, Wang G, Wang Y, Yang J, Taub JW, Lin H, Ge Y (2019) Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Haematologica. https://doi.org/10.3324/haematol.2018.201343

Article  PubMed  PubMed Central  Google Scholar 

Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 143(3):323–336. https://doi.org/10.1016/j.pharmthera.2014.04.004

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang Z, Huang Y, Zhang J (2014) Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell Mol Biol Lett 19(2):233–242. https://doi.org/10.2478/s11658-014-0191-7

留言 (0)

沒有登入
gif