Medina-Pizzali M, Robles P, Mendoza M, Torres C. [Arsenic intake: Impact in human nutrition and health (Spanish)]. Revista peruana de medicina experimental y salud publica. 2018; 35(1):93-102. [DOI:10.17843/rpmesp.2018.351.3604] [PMID]
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution. 2021; 289:117940. [DOI:10.1016/j.envpol.2021.117940] [PMID]
Rajiv SV, George M, Nandakumar G. Dermatological manifestations of arsenic exposure. Journal of Skin and Sexually Transmitted Diseases. 2023; 5(1):14-21. [DOI:10.25259/JSSTD_3_2022]
Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Letters. 2014; 354(2):211-9. [DOI:10.1016/j.canlet.2014.08.016] [PMID]
Anderton H, Alqudah S. Cell death in skin function, inflammation, and disease. Biochemical Journal. 2022; 479(15):1621-51. [DOI:10.1042/BCJ20210606] [PMID]
Patki AH. Apoptosis: Its significance in dermatology. Indian Journal of Dermatology, Venereology and Leprology. 2002; 68(2):59-62. [PMID]
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5):1060-72. [DOI:10.1016/j.cell.2012.03.042] [PMID]
Sahoo K, Sharma A. Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: Adding new paradigms to the links with diseases. Apoptosis: An International Journal on Programmed Cell Death. 2023; 28(3-4):277-92. [DOI:10.1007/s10495-022-01806-0] [PMID]
Liu L, Lian N, Shi L, Hao Z, Chen K. Ferroptosis: Mechanism and connections with cutaneous diseases. Frontiers in Cell and Developmental Biology. 2023; 10:1079548. [DOI:10.3389/fcell.2022.1079548] [PMID]
Vats K, Kruglov O, Mizes A, Samovich SN, Amoscato AA, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biology. 2021; 47:102143. [DOI:10.1016/j.redox.2021.102143]
Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Research. 2023; 51(D1):D1257-62. [DOI:10.1093/nar/gkac833] [PMID]
Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Research. 2016; 44(D1):D380-4. [DOI:10.1093/nar/gkv1277] [PMID]
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology. 2003; 4(9):1-11. [DOI:10.1186/gb-2003-4-9-r60]
Zhou N, Yuan X, Du Q, Zhang Z, Shi X, Bao J, et al. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Research. 2023; 51(D1):D571-82. [DOI:10.1093/nar/gkac935] [PMID]
Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: The human gene integrator. Database: The Journal of Biological Databases and Curation. 2010; 2010:baq020. [DOI:10.1093/database/baq020] [PMID]
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia Of Genes And Genomes. Nucleic Acids Research. 2000; 28(1):27-30. [DOI:10.1093/nar/28.1.27] [PMID]
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 2019; 47(D1):D607-13. [DOI:10.1093/nar/gky1131] [PMID]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research. 2003; 13(11):2498-504. [DOI:10.1101/gr.1239303] [PMID]
Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al. GeneMANIA update 2018. Nucleic Acids Research. 2018; 46(W1):W60-4. [DOI:10.1093/nar/gky311] [PMID]
Huang HY, Lin YCD, Cui S, Huang Y, Tang Y, Xu J, et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Research. 2022; 50(D1):D222-30. [DOI:10.1093/nar/gkab1079] [PMID]
Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Research. 2018; 46(D1):D380-6. [DOI:10.1093/nar/gkx1013] [PMID]
George CM, Sima L, Arias M, Mihalic J, Cabrera LZ, Danz D, et al. Arsenic exposure in drinking water: An unrecognized health threat in Peru. Bulletin of the World Health Organization. 2014; 92(8):565-72. [DOI:10.2471/BLT.13.128496] [PMID]
Huang HW, Lee CH, Yu HS. Arsenic-induced carcinogenesis and immune dysregulation. International Journal of Environmental Research and Public Health. 2019; 16(15):2746. [DOI:10.3390/ijerph16152746] [PMID]
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015; 34(45):5617-25. [DOI:10.1038/onc.2015.32] [PMID]
Lemarie A, Morzadec C, Bourdonnay E, Fardel O, Vernhet L. Human macrophages constitute targets for immunotoxic inorganic arsenic. The Journal of Immunology. 2006; 177(5):3019-27. [DOI:10.4049/jimmunol.177.5.3019] [PMID]
Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nature Genetics. 1999; 21(4):410-3. [DOI:10.1038/7747] [PMID]
Chang YW, Singh KP. Arsenic-induced neoplastic transformation involves epithelial-mesenchymal transition and activation of the β-catenin/c-Myc pathway in human kidney epithelial cells. Chemical Research in Toxicology. 2019; 32(6):1299-309. [DOI:10.1021/acs.chemrestox.9b00089] [PMID]
Liu Y, Zhou L, Xu Y, Li K, Zhao Y, Qiao H, et al. Heat shock proteins and ferroptosis. Frontiers in Cell and Developmental Biology. 2022; 10:864635. [DOI:10.3389/fcell.2022.864635] [PMID]
Bernstam L, Nriagu J. Molecular aspects of arsenic stress. Journal of Toxicology and Environmental Health. Part B, Critical Reviews. 2000; 3(4):293-322. [DOI:10.1080/109374000436355] [PMID]
Cirotti C, Taddei I, Contadini C, Pepe G, De Bardi M, Borsellino G, et al. NRF2 connects Src tyrosine kinase to ferroptosis resistance in glioblastoma. bioRxiv. 2023:2023. [DOI:10.1101/2023.05.08.539792]
Wu H, Wang F, Ta N, Zhang T, Gao W. The multifaceted regulation of mitochondria in ferroptosis. Life (Basel, Switzerland). 2021; 11(3):222. [DOI:10.3390/life11030222] [PMID]
Partridge MA, Huang SX, Hernandez-Rosa E, Davidson MM, Hei TK. Arsenic induced mitochondrial DNA damage and altered mitochondrial oxidative function: Implications for genotoxic mechanisms in mammalian cells. Cancer Research. 2007; 67(11):5239-47. [DOI:10.1158/0008-5472.CAN-07-0074] [PMID]
Xiao R, Wang S, Guo J, Liu S, Ding A, Wang G, et al. Ferroptosis-related gene NOX4, CHAC1 and HIF1A are valid biomarkers for stomach adenocarcinoma. Journal of Cellular and Molecular Medicine. 2022; 26(4):1183-93. [DOI:10.1111/jcmm.17171] [PMID]
Yang YC, Zhang MY, Liu JY, Jiang YY, Ji XL, Qu YQ. Identification of ferroptosis-related hub genes and their association with immune infiltration in chronic obstructive pulmonary disease by bioinformatics analysis. International Journal of Chronic Obstructive Pulmonary Disease. 2022; 17:1219-36. [DOI:10.2147/COPD.S348569] [PMID]
Shao Y, Wang K, Xiong X, Liu H, Zhou J, Zou L, et al. Comprehensive analysis of ferroptosis-related markers for the clinical and biological value in gastric cancer. Oxidative Medicine and Cellular Longevity. 2021; 2021:8893663. [DOI:10.1155/2021/6659282] [PMID]
Velkova I, Pasino M, Khalid Z, Menichini P, Martorana E, Izzotti A, et al. Modulation of ferroptosis by microRNAs in human cancer. Journal of Personalized Medicine. 2023; 13(5):719. [DOI:10.3390/jpm13050719] [PMID]
Ghafouri-Fard S, Shoorei H, Dabiri Oskuei S, Hussen BM, Rasool Abdullah SR, Taheri M, et al. The interaction between miRNAs and hazardous materials. Non-coding RNA Research. 2023; 8(4):507-19. [DOI:10.1016/j.ncrna.2023.06.005] [PMID]
Comments (0)