Plant parasitic nematode-fungus interactions: recent concepts and mechanisms

Abuzar, S. (2012). Pathogenic potential of root knot nematode, Meloidogyne incognita and wilt fungus, Fusarium oxysporum f. sp. vasinfectum alone and in combination on the disease development and plant growth of okra, Abelmoschus esculentus. International Journal of Applied Research Studies, 1, 1–16.

Google Scholar 

Adam, M., Westphal, A., Hallmann, J., & Heuer, H. (2014). Specific microbial attachment to root knot nematodes in suppressive soil. Applied and Environmental Microbiology, 80, 2679–2686.

Article  PubMed  PubMed Central  Google Scholar 

Agbaglo, S. Y., Nyaku, S. T., Vigbedor, H. D., & Cornelius, E. W. (2020). Pathogenicity of Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum on growth and yield of two okra varieties cultivated in Ghana. International Journal of Agronomy. https://doi.org/10.1155/2020/8824165

Article  Google Scholar 

Ahamad, L., & Siddiqui, Z. A. (2021). Effects of Pseudomonas putida and Rhizophagus irregularis alone and in combination on growth, chlorophyll, carotenoid content and disease complex of carrot. Indian Phytopathology, 74, 763–773.

Article  Google Scholar 

Ahmad, L., & Siddiqui, Z. A. (2017). Effects of Meloidogyne incognita, Alternaria dauci and Fusarium solani on carrot in different types of soil. Acta Phytopathologica Et Entomologica Hungarica, 52(1), 39–48.

Article  CAS  Google Scholar 

Ahmad, L., Siddiqui, Z. A., & Abd Allah, E. F. (2019). Effects of interaction of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani on the growth, chlorophyll, carotenoid and proline contents of carrot in three types of soil. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 69(4), 324–331.

CAS  Google Scholar 

Ahmadi, M., Mirakhorli, N., Erginbas-Orakci, G., Ansari, O., Braun, H. J., Paulitz, T., & Dababat, A. A. (2022). Interactions among cereal cyst nematode Heterodera filipjevi, dryland crown rot Fusarium culmorum, and drought on grain yield components and disease severity in bread wheat. Canadian Journal of Plant Pathology. https://doi.org/10.1080/07060661.2021.2013947

Article  Google Scholar 

Akhtar, M. S., & Siddiqui, Z. A. (2008). Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In Z. A. Siddiqui, M. S. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable Agriculture and Forestry (p. 362). Springer.

Google Scholar 

Alam, S., & Siddiqui, Z. A. (2013). Interactions of Meloidogyne incognita, Ascochyta rabiei, Xanthomonas campestris pv. cassiae and Rhizobium sp. on the disease complex of chickpea. Acta Phytopathologica Et Entomologica Hungarica, 48, 227–236.

Article  Google Scholar 

Al-Hammouri, A., Lindemann, W., Thomas, S. & Sanogo, S. (2010). Interaction between Meloidogyne incognita and Rhizoctonia solani on chilli (Capsicum annuum). In Proceedings of ASA, CSSA and SSSA international annual meetings, long beach, CA (Oct. 31–Nov. 3, 2010).

Al-Hammouri, A., Lindemann, W., Sanogo, S., Thomas, S., & Steiner, R. (2013). Short Communication: Interaction between Rhizoctonia solani and Meloidogyne incognita on chile pepper in soil infested simultaneously with both plant pathogens. Candian Journal of Plant Sciences, 93, 67–69.

Article  Google Scholar 

Al-Hazmi, A. S., & Al-Nadary, S. N. (2015). Interaction between Meloidogyne incognita and Rhizoctonia solani on green beans. Saudi Journal of Biological Sciences, 22, 570–574.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anwar, A., & Khan, F. A. (2002). Studies on the interaction between Meloidogyne incognita and Rhizoctonia solani on soybean. Annals of Plant Protection Sciences, 10(1), 128–130.

Google Scholar 

Asmaa, A. M., Ibrahim, I. K. A., Shehata, M. R. A., & El-Saedy, M. A. M. (2007). Interaction between certain root-rot fungi and the root-knot nematode, Meloidogyne incognita on sunflower plants. Egyptian Journal of Phytopathology, 35, 1–11.

Google Scholar 

Atkinson, C. F. (1892). Some disease of cotton: 3 Frenching. Bull Alabama Agric Exp Station, 41, 19–29.

Google Scholar 

Back, M.A., Jenkinson, P., & Haydock, P.P.J. (2000). The interaction between potato cyst nematodes and Rhizoctonia solani diseases in potatoes. In Proceedings of the brighton crop protection conference, pests and diseases. British Crop Protection Council, pp 503–6

Back, M. A., Haydock, P. P. J., & Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soil borne fungi. Plant Pathology, 51(6), 683–697.

Article  Google Scholar 

Back, M., Haydock, P., & Jenkinson, P. (2006). Interactions between the potato cyst nematode Globodera rostochiensis and diseases caused by Rhizoctonia solani AG3 in potatoes under field conditions. European Journal of Plant Pathology, 114, 215–223. https://doi.org/10.1007/s10658-005-5281-y

Article  Google Scholar 

Balodi, R., Bisht, S., Ghatak, A., & Rao, K. H. (2017). Plant disease diagnosis: Technological advancements and challenges. Indian Phytopathology, 70(3), 275–281.

Article  Google Scholar 

Bertrand, B., Nunez, C., & Sarah, J. L. (2000). Disease complex in coffee involving Meloidogyne arabicida and Fusarium oxysporum. Plant Pathology, 49, 383–388.

Article  Google Scholar 

Beyan, A., Seid, A., & Shifa, H. (2019). Response of tomato genotypes to Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici co-infestation under glasshouse conditions. Pakistan Journal of Nematology, 37(1), 63–82.

Article  Google Scholar 

Bhagawati, B., Das, B. C., & Sinha, A. K. (2007). Interaction of Meloidogyne incognita and Rhizoctonia solani on okra. Annals of Plant Protection Sciences, 15(2), 469–539.

Google Scholar 

Bhat, M. Y., Shah, N. H., Fazal, M., & Wani, A. H. (2011). Response of French bean (Phaseolus vulgaris L.) to disease complexes involving Meloidogyne incognita and Rhizoctonia solani. Indian Journal of Nematology, 41(2), 156–9.

Google Scholar 

Bhattarai, S., Haydock, P. P., Back, M. A., Hare, M. C., & Lankford, W. T. (2009). Interactions between the potato cyst nematodes, Globodera pallida, G. rostochiensis, and soil-borne fungus, Rhizoctonia solani (AG3), diseases of potatoes in the glasshouse and the field. Nematology, 11(4), 631–640.

Article  Google Scholar 

Bjorsell, P., Edin, E., & Viketoft, M. (2017). Interactions between some plant-parasitic nematodes and Rhizoctonia solani in potato fields. Applied Soil Ecology, 113, 151–154.

Article  Google Scholar 

Brown, A. M. V. (2018). Endosymbionts of plant-parasitic nematodes. Annual Review of Phytopathology, 56, 225–242.

Article  CAS  PubMed  Google Scholar 

Butcher, R. A., Fujita, M., Schroeder, F. C., & Clardy, J. (2007). Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nature Chemical Biology, 3, 420–422. https://doi.org/10.1038/nchembio.2007.3

Article  CAS  PubMed  Google Scholar 

Cameron, D., Neal, A., van Wees, S., & Ton, J. (2013). Mycorrhiza-induced resistance: More than the sum of its parts? Trends in Plant Science, 18, 539–545.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castellano, G., Casassa-Padrón, A. M., Ramírez- Méndez, R., Pérez-Pérez, E., Burgos, M. E., & Crozzoli, R. (2012). Nemátodos fitoparásitos asociados a frutales estratégicos em el municipio Baralt del estado Zulia, Venezuela. Fitopatología Venezolana, 25, 2–6.

Google Scholar 

Castillo, P., Nico, A. I., Navas-Cortés, J. A., Landa, B. B., Jiménez-Díaz, R. M., & Vovlas, N. (2010). Plant-parasitic nematodes attacking olive trees and their management. Plant Disease, 94, 148–162. https://doi.org/10.1094/PDIS-94-2-0148

Article  PubMed  Google Scholar 

Chanthala, L., Kurrey, N., Appaiah, A., & Rao, R. (2019). Probiotic yeasts inhibit virulence of non-albicans Candida Species. mBio, 10, e02307–e02319.

Google Scholar 

De, R. K., Ali, S. S., & Dwivedi, R. P. (2001). Effect of interaction between Fusarium oxysporum f.sp. lentis and Meloidogyne javanica on lentil. Indian Journal of Pulses Research, 14, 71–73.

Google Scholar 

Decraemer, W., & Hunt, D. (2006). Structure and classification. In R. Perry & M. Moens (Eds.), Plant nematology (pp. 3–32). CAB International. https://doi.org/10.1079/9781845930561.0000

Chapter  Google Scholar 

Decraemer, W., & Robbins, R. T. (2007). The who, what and where of Longidoridae and Trichodoridae. Journal of Nematology, 39, 295–297.

PubMed  PubMed Central  Google Scholar 

Devi, T. S., Mahanta, B., & Das, D. (2015). Interaction of Meloidogyne incognita and Rhizoctonia solani on brinjal. International Journal of Plant, Animal and Environmental Sciences, 5(1), 174–176.

Google Scholar 

Dirksen, P., Marsh, S. A., Braker, I., Heitland, N., Wagner, S., Nakad, R., Mader, S., Petersen, C., Kowallik, V., Rosenstiel, P., & Félix, M. A. (2016). The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biology, 14, 38.

Article  PubMed  PubMed Central  Google Scholar 

Doehlemann, G., Ökmen, B., Wenjun Zhu, W., & Sharon, A. (2017). Plant Pathogenic Fungi. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016

Article  PubMed  Google Scholar 

Dubey, W., & Trivedi, P. C. (2006). Effect of Fusarium oxysporum and Rhizotonia solani on the development of Meloidogyne incognita on okra. Journal of Phytological Research, 19, 89–93.

Google Scholar 

Elhady, A., Hallmann, J., & Heuer, H. (2020). Symbiosis of soybean with nitrogen fixing bacteria affected by root lesion nematodes in a density dependent manner. Scientific Reports, 10, 1619.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gogoi, D., Mahanta, B., & Saikia, A. K. (2015). Interaction of Meloidogyne incognita and Rhizoctonia solani on French bean. Journal of Global Biosciences, 6(6), 5050–5054.

Google Scholar 

Gomes, V. M., Souza, R. M., Mussi-Dias, V., Silveira, S. F., & Dolinski, C. (2011). Guava decline: A complex disease involving Meloidogyne mayaguensis and Fusarium solani. Journal of Phytopathology. https://doi.org/10.1111/j.1439-0434.2010.01711.x

Article  Google Scholar 

Haarith, D., Kim, D.-G., Strom, N., Chen, S., & Bushley, K. (2020). In vitro screening of a culturable soybean cyst nematode cyst mycobiome for potential biological control agents and biopesticides. Phytopathology, 110, 1388–1397.

Article  CAS  PubMed  Google Scholar 

Hajihassani, A., Smiley, R. W., & Afshar, F. J. (2013). Effects of co-inoculation with Pratylenchus thornei and Fusarium culmorum on growth and yield of winter wheat. Plant Disease, 97(11), 1470–1477. https://doi.org/10.1094/PDIS-02-13-0168-RE

Article  PubMed  Google Scholar 

Hamid, M. I., Hussain, M., Yunpeng, W., Xiaoling, Z., Xiang, M., & Liu, X. (2017). Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode. FEMS Microbiology Ecology, 93, fiw222.

Article  Google Scholar 

Haraguchi, S., & Yoshiga, T. (2020). Potential of the fungal feeding nematode Aphelenchus avenae to control fungi and the plant parasitic nematode Ditylenchus destructor associated with garlic. Biological Control, 143, 104203. https://doi.org/10.1016/j.biocontrol.2020.104203

Article  CAS  Google Scholar 

Haseeb, A., Amin, A., & Sharma, A. (2007). Disease complex in Pisum sativum involving Meloidogyne incognita and Fusarium oxysporum f. sp. pisi. Annals of Plant Protection Sciences, 15, 189–194.

Google Scholar 

Hassan, G. A., Al-Assas, K., & Abou Al-Fadil, T. (2012). Interactions between Heterodera avenae and Fusarium culmorum on yield components of wheat, nematode reproduction and crown rot severity. Nematropica, 42(2), 260–266.

留言 (0)

沒有登入
gif