Vibrio cholerae and Salmonella Typhi culture-based wastewater or non-sewered sanitation surveillance in a resource-limited region

Muller M. Have five decades of development engineering research improved sanitation in Southern Africa? J Int Dev. 2020;32:96–111. https://doi.org/10.1002/jid.3452

Article  Google Scholar 

World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF). Progress on household drinking water, sanitation and hygiene 2000-2022. https://data.unicef.org/resources/jmp-report-2023/ Accessed 8 September 2023.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. https://doi.org/10.1373/clinchem.2008.112797

Article  CAS  PubMed  Google Scholar 

Capone D, Chigwechokha P, de los Reyes FL III, Holm RH, Risk BB, Tilley E, et al. Impact of sampling depth on pathogen detection in pit latrines. PLoS Negl Trop Dis. 2021;15:e0009176. https://doi.org/10.1371/journal.pntd.0009176

Article  PubMed  PubMed Central  Google Scholar 

Johnson R, Sharma JR, Ramharack P, Mangwana N, Kinnear C, Viraragavan A, et al. Tracking the circulating SARS-CoV-2 variant of concern in South Africa using wastewater-based epidemiology. Sci Rep. 2022;12:1–2. https://doi.org/10.1038/s41598-022-05110-4

Article  CAS  Google Scholar 

Mangwana N, Archer E, Muller CJ, Preiser W, Wolfaardt G, Kasprzyk-Hordern B, et al. Sewage surveillance of SARS-CoV-2 at student campus residences in the Western Cape, South Africa. Sci Total Environ. 2022;851:158028. https://doi.org/10.1016/j.scitotenv.2022.158028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Servetas SL, Parratt KH, Brinkman NE, Shanks OC, Smith T, Mattson PJ, et al. Standards to support an enduring capability in wastewater surveillance for public health: Where are we? Case Stud Chem Environ Eng. 2022;6:100247. https://doi.org/10.1016/j.cscee.2022.100247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naughton CC, Holm RH, Lin NJ, James BP, Smith T. Online dashboards for SARS-CoV-2 wastewater data need standard best practices: an environmental health communication agenda. J Water Health. 2023;21:615–24. https://doi.org/10.2166/wh.2023.312

Article  PubMed  Google Scholar 

Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E, Sallah K, et al. Using mobile phone data to predict the spatial spread of cholera. Sci Rep. 2015;5:1–5. https://doi.org/10.1038/srep08923

Article  CAS  Google Scholar 

Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis. 2015;9:e0003832. https://doi.org/10.1371/journal.pntd.0003832

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S. Cholera. Lancet. 2022;399:1429–40. https://doi.org/10.1016/S0140-6736(22)00330-0

Article  PubMed  Google Scholar 

Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA, Troeger CE, et al. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19:369–81. https://doi.org/10.1016/S1473-3099(18)30685-6

Article  Google Scholar 

Srinivasan M, Sindhu KN, Giri S, Kumar N, Mohan VR, Grassly NC, et al. Salmonella Typhi shedding and household transmission by children with blood culture-confirmed typhoid fever in Vellore, South India. J Infect Dis. 2021;224:S593–600. https://doi.org/10.1093/infdis/jiab409

Article  PubMed  PubMed Central  Google Scholar 

Feasey NA, Gaskell K, Wong V, Msefula C, Selemani G, Kumwenda S, et al. Rapid emergence of multidrug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi. PLoS Negl Trop Dis. 2015;9:e0003748. https://doi.org/10.1371/journal.pntd.0003748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manor Y, Handsher R, Halmut T, Neuman M, Bobrov A, Rudich H, et al. Detection of poliovirus circulation by environmental surveillance in the absence of clinical cases in Israel and the Palestinian authority. J Clin Microbiol. 1999;37:1670–5. https://doi.org/10.1128/JCM.37.6.1670-1675.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asghar H, Diop OM, Weldegebriel G, Malik F, Shetty S, El Bassioni L, et al. Environmental surveillance for polioviruses in the Global Polio Eradication Initiative. J Infect Dis. 2014;210:S294–303. https://doi.org/10.1093/infdis/jiu384

Article  PubMed  Google Scholar 

Liu P, Ibaraki M, Kapoor R, Amin N, Das A, Miah R, et al. Development of Moore swab and ultrafiltration concentration and detection methods for Salmonella Typhi and Salmonella Paratyphi A in wastewater and application in Kolkata, India and Dhaka, Bangladesh. Front Microbiol. 2021;12:684094. https://doi.org/10.3389/fmicb.2021.684094

Article  PubMed  PubMed Central  Google Scholar 

Basu P, Choudhury S, Shridhar V, Huilgol P, Roychoudhury S, Nandi I, et al. Surveillance of SARS-CoV-2 RNA in open-water sewage canals contaminated with untreated wastewater in resource-constrained regions. Access Microbiol. 2022;4:000318. https://doi.org/10.1099/acmi.0.000318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakariya M, Ahmed F, Islam MA, Al Marzan A, Hasan MN, Hossain M, et al. Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in developing countries with onsite sanitation facilities. Environ Pollut. 2022;311:119679. https://doi.org/10.1016/j.envpol.2022.119679

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolarević S, Micsinai A, Szántó-Egész R, Lukács A, Kračun-Kolarević M, Djordjevic A, et al. Wastewater-based epidemiology in countries with poor wastewater treatment—epidemiological indicator function of SARS-CoV-2 RNA in surface waters. Sci Total Environ. 2022;843:156964. https://doi.org/10.1016/j.scitotenv.2022.156964

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chacón L, Morales E, Valiente C, Reyes L, Barrantes K. Wastewater-based epidemiology of enteric viruses and surveillance of acute gastrointestinal illness outbreaks in a resource-limited region. Am J Trop Med Hyg. 2021;105:1004–12. https://doi.org/10.4269/ajtmh.21-0050

Article  PubMed  PubMed Central  Google Scholar 

Zohra T, Ikram A, Salman M, Amir A, Saeed A, Ashraf Z, et al. Wastewater based environmental surveillance of toxigenic Vibrio cholerae in Pakistan. PLoS ONE. 2021;16:e0257414. https://doi.org/10.1371/journal.pone.0257414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou NA, Ong AQ, Fagnant-Sperati CS, Harrison JC, Kossik AL, Beck NK, et al. Evaluation of sampling and concentration methods for Salmonella enterica serovar Typhi detection from wastewater. Am J Trop Med Hyg. 2023;108:482.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCall C, Wu H, Miyani B, Xagoraraki I. Identification of multiple potential viral diseases in a large urban center using wastewater surveillance. Water Res. 2020;184:116160. https://doi.org/10.1016/j.watres.2020.116160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holm RH, Chigwechokha P, Kinnear C, Winters A, Street R. Promoting surveillance in sub-Saharan Africa: Moving to wastewater and environmental genomic surveillance requires more attention. ACS EST Water. 2023;3:1994–6. https://doi.org/10.1021/acsestwater.3c00314

Article  CAS  Google Scholar 

Parsons LM, Somoskövi Á, Gutierrez C, Lee E, Paramasivan CN, Abimiku AL, et al. Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev. 2011;24:314–50. https://doi.org/10.1128/CMR.00059-10

Article  PubMed  PubMed Central  Google Scholar 

Ssengooba W, Gelderbloem SJ, Mboowa G, Wajja A, Namaganda C, Musoke P, et al. Feasibility of establishing a biosafety level 3 tuberculosis culture laboratory of acceptable quality standards in a resource-limited setting: an experience from Uganda. Health Res Policy Sy. 2015;13:1–10. https://doi.org/10.1186/1478-4505-13-4

Article  Google Scholar 

Crane PE, Silliman SE. Sampling strategies for estimation of parameters related to ground water quality. Groundwater. 2009;47:699–708.

Article  CAS  Google Scholar 

Knudsen BE, Bergmark L, Munk P, Lukjancenko O, Priemé A, Aarestrup FM, et al. Impact of sample type and DNA isolation procedure on genomic inference of microbiome composition. MSystems. 2016;1:e00095–16. https://doi.org/10.1128/msystems.00095-16

Article  PubMed  PubMed Central  Google Scholar 

Park JY, Jeon S, Kim JY, Park M, Kim S. Multiplex real-time polymerase chain reaction assays for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Osong Public Health Res Perspect. 2013;4:133–9. https://doi.org/10.1016/j.phrp.2013.04.004

Article  PubMed  PubMed Central  Google Scholar 

Tennant SM, Toema D, Qamar F, Iqbal N, Boyd MA, Marshall JM, et al. Detection of typhoidal and paratyphoidal Salmonella in blood by real-time polymerase chain reaction. Clin Infect Dis. 2015;61:S241–50. https://doi.org/10.1093/cid/civ726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pilar AV, Petronella N, Dussault FM, Verster AJ, Bekal S, Levesque RC, et al. Similar yet different: phylogenomic analysis to delineate Salmonella and Citrobacter species boundaries. BMC Genom. 2020;21:1–3. https://doi.org/10.1186/s12864-020-06780-y

Article  CAS  Google Scholar 

Ministry of Health (MoH) [Malawi] and ICF International. Malawi service provision assessment (MSPA) 2013–14. Lilongwe: MoH and ICF International. 2014.

Ngwira LG, Sharma B, Shrestha KB, Dahal S, Tuladhar R, Manthalu G, et al. Cost of wastewater-based environmental surveillance for SARS-CoV-2: evidence from pilot sites in Blantyre, Malawi and Kathmandu, Nepal. PLoS Glob Public Health. 2022;2:e0001377. https://doi.org/10.1371/journal.pgph.0001377

Article 

留言 (0)

沒有登入
gif