Predicting personal PAH exposure using high dimensional questionnaire and wristband data

Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25:107–23.

Article  Google Scholar 

Chen CY, Kuo YC, Wang SM, Wu KR, Chen YC, Tsai PJ. Techniques for predicting exposures to polycyclic aromatic hydrocarbons (PAHs) emitted from cooking processes for cooking workers. Aerosol Air Qual Res. 2019;19:307–17.

Article  CAS  Google Scholar 

Dunbar JC, Lin CI, Vergucht I, Wong J, Durant JL. Estimating the contributions of mobile sources of PAH to urban air using real-time PAH monitoring. Sci Total Environ. 2001;279:1–19.

Article  CAS  PubMed  Google Scholar 

Harrison CL, Brown WJ, Hayman M, Moran LJ, Redman LM. The role of physical activity in preconception, pregnancy and postpartum health. Semin Reprod Med. 2016;34:e28–37.

Article  PubMed  PubMed Central  Google Scholar 

Nielsen T. Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos Environ. 1996;30:3481–90.

Article  CAS  Google Scholar 

Lawal AT. Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci. 2017;3:1339841.

Article  Google Scholar 

Genkinger JM, Stigter L, Jedrychowski W, Huang T-J, Wang S, Roen EL, et al. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure, antioxidant levels and behavioral development of children ages 6–9. Environ Res. 2015;140:136–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu B, Xue Z, Zhu X, Jia C. Long-term trends (1990–2014), health risks, and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the U.S. Environ Pollut. 2017;220:1171–9.

Article  CAS  PubMed  Google Scholar 

Li W, Park R, Alexandrou N, Dryfhout-Clark H, Brice K, Hung H. Multi-year analyses reveal different trends, sources, and implications for source-related human health risks of atmospheric polycyclic aromatic hydrocarbons in the Canadian Great Lakes Basin. Environ Sci Technol. 2021;55:2254–64.

Article  CAS  PubMed  Google Scholar 

Tsai PJ, Shih TS, Chen HL, Lee WJ, Lai CH, Liou SH. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmos Environ. 2004;38:333–43.

Article  CAS  Google Scholar 

Nethery E, Teschke K, Brauer M. Predicting personal exposure of pregnant women to traffic-related air pollutants. Sci Total Environ. 2008;395:11–22.

Article  CAS  PubMed  Google Scholar 

Noth EM, Hammond SK, Biging GS, Tager IB. A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. Atmos Environ. 2011;45:2394–403.

Article  CAS  Google Scholar 

Choi H, Perera F, Pac A, Wang L, Flak E, Mroz E, et al. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring. Environ Health Perspect. 2008;116:1509–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tonne CC, Whyatt RM, Camann DE, Perera F, Kinney PL. Predictors of personal polycyclic aromatic hydrocarbon exposures among pregnant minority women in New York City. Environ Health Perspect. 2004;112:754–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohlman D, Donatuto J, Heidt M, Barton M, Campbell L, Anderson KA, et al., A case study describing a community-engaged approach for evaluating polycyclic aromatic hydrocarbon exposure in a native American community. Int J Environ Res Public Health. 2019;16:327.

Samon SM, Hammel SC, Stapleton HM, Anderson KA. Silicone wristbands as personal passive sampling devices: current knowledge, recommendations for use, and future directions. Environ Int. 2022;169:107339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samon SM, Rohlman D, Tidwell LG, Hoffman PD, Oluyomi AO, Anderson KA. Associating increased chemical exposure to hurricane Harvey in a longitudinal panel using silicone wristbands. Int J Environ Res Public Health. 2022;19:6670.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Romanak KA, Stubbings WA, Arrandale VH, Hendryx M, Diamond ML, et al. Silicone wristbands integrate dermal and inhalation exposures to semi-volatile organic compounds (SVOCs). Environ Int. 2019;132:105104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon HM, Bramer LM, Scott R, Calero L, Holmes D, Gibson EA, et al. Evaluating predictive relationships between wristbands and urine for assessment of personal PAH exposure. Environ Int. 2022;163:107226.

Article  PubMed  PubMed Central  Google Scholar 

Dixon HM, Armstrong G, Barton M, Bergmann AJ, Bondy M, Halbleib ML, et al. Discovery of common chemical exposures across three continents using silicone wristbands. R Soc open Sci. 2019;6:181836–181836.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson KA, Szelewski MJ, Wilson G, Quimby BD, Hoffman PD. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses. J Chromatogr A. 2015;1419:p.89–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon HM, Scott R, Holmes D, Calero L, Kincl LD, Waters KM, et al. Silicone wristbands compared with traditional polycyclic aromatic hydrocarbon exposure assessment methods. Anal Bioanal Chem. 2018;410:3059–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porter SR, Snipp CM. Measuring Hispanic origin: reflections on Hispanic race reporting. Ann Am Acad Political Soc Sci. 2018;677:140–52.

Article  Google Scholar 

Team R.C., R: a language and environment for statistical computing. 2018, R Foundation for Statistical Computing: Vienna, Austria.

Fisher RA. On the interpretation of χ2 from contingency tables, and the calculation of J. J R Stat Soc. 1922;85:87–94.

Article  Google Scholar 

Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621.

Article  Google Scholar 

Breiman L, Friedman JH, Olshen RA, and Stone CJ. Classification and regression trees. 2017: Routledge.

Therneau T, Atkinson B, & Ripley B, Rpart: recursive partitioning. R package version 4.1.16. 2022.

Croux C, Filzmoser, Oliveira MR. Algorithms for Projection–Pursuit robust principal component analysis. Chemom Intell Lab Syst. 2007;87:218–25.

Article  CAS  Google Scholar 

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23:1164–7.

Article  CAS  PubMed  Google Scholar 

Paulik LB, Hobbie KA, Rohlman D, Smith BW, Scott R, Kincl L, et al. Environmental and individual PAH exposures near rural natural gas extraction. Environ Pollut. 2018;241:397–405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohlman DA-O, Donatuto J, Heidt M, Barton M, Campbell L, Anderson KA, et al. A case study describing a community-engaged approach for evaluating polycyclic aromatic hydrocarbon exposure in a native American community. Int J Environ Res Public Health. 2018;327:1660–4601. https://doi.org/10.3390/ijerph16030327.

Lodovici M, Akpan V, Evangelisti C, Dolara. Sidestream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. J Appl Toxicol. 2004;24:277–81.

Article  CAS  PubMed  Google Scholar 

Skupińska K, Misiewicz I, Kasprzycka-Guttman T. Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms. Acta Pol Pharm. 2004;61:233–40.

PubMed  Google Scholar 

Zhang Y, Ding J, Shen G, Zhong J, Wang C, Wei S, et al. Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites—a controlled case study in Beijing, China. Environ Pollut. 2014;184:515–22.

Article  CAS  PubMed  Google Scholar 

Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett. 2007;5:169–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif