Barnes DK, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci. 2009;364:1985–98.
Article PubMed PubMed Central CAS Google Scholar
Molenaar R, Chatterjee S, Kamphuis B, Segers-Nolten IMJ, Claessens MMAE, Blum C. Nanoplastic sizes and numbers: quantification by single particle tracking. Environ Sci: Nano. 2021;8:723–30.
Torres-Agullo A, Karanasiou A, Moreno T, Lacorte S. Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. Sci Total Environ. 2021;800:149555.
Article PubMed PubMed Central CAS Google Scholar
Zarus GM, Muianga C, Hunter CM, Pappas RS. A review of data for quantifying human exposures to micro and nanoplastics and potential health risks. Sci Total Environ. 2021;756:144010.
Article PubMed CAS Google Scholar
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, et al. From properties to toxicity: Comparing microplastics to other airborne microparticles. J Hazard Mater. 2022;428:128151.
Article PubMed CAS Google Scholar
Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using muFTIR spectroscopy. Sci Total Environ. 2022;831:154907.
Article PubMed CAS Google Scholar
Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X. Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain. Nano Lett. 2022;22:1091–9.
Article PubMed CAS Google Scholar
Nemmar A, Hoylaerts MF, Hoet PHM, Vermylen J, Nemery B. Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol. 2003;186:38–45.
Article PubMed CAS Google Scholar
Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int J Environ Res Public Health. 2020;17:1212.
ATSDR. Exposure Dose Guidance for Determining Life Expectancy and Exposure Factor. US Department of Health and Human Services, Public Health Service. 2016. Available at: https://www.atsdr.cdc.gov/pha-guidance/resources/ATSDR-EDG-Life-Expectancy-Exposure-Factor-508.pdf
Kashfi FS, Ramavandi B, Arfaeinia H, Mohammadi A, Saeedi R, De-la-Torre GE, et al. Occurrence and exposure assessment of microplastics in indoor dusts of buildings with different applications in Bushehr and Shiraz cities, Iran. Sci Total Environ. 2022;829:154651.
Article PubMed CAS Google Scholar
Soltani NS, Taylor MP, Wilson SP. Quantification and exposure assessment of microplastics in Australian indoor house dust. Environ Pollut. 2021;283:117064.
Article PubMed CAS Google Scholar
ATSDR. Exposure Dose Guidance for Body Weight. Department of Health and Human Services, Public Health Service. 2016. Available at: https://www.atsdr.cdc.gov/pha-guidance/resources/ATSDR-EDG-Body-Weight-508.pdf
ATSDR. Guidance for Inhalation Exposures. Department of Health and Human Services, Public Health Service. 2020. Available at: https://www.atsdr.cdc.gov/pha-guidance/resources/ATSDR-EDG-Inhalation-508.pdf
EPA. Exposure Factors Handbook. Chapter 8―Body Weight Studies. Environmental Protection Agency. 2011. Available at: https://www.epa.gov/expobox/exposure-factors-handbook-chapter-8
EPA. Exposure Factors Handbook. Chapter 6—Inhalation Rates. Environmental Protection Agency. 2011. Available at: https://www.epa.gov/expobox/exposure-factors-handbook-chapter-6
Statistics USBoL. American Time Use Survey, weekday work hours. US Department of Labor 2019. Available at: https://www.bls.gov/news.release/archives/atus_06252020.pdf
Leusch FDL, Ziajahromi S. Converting mg/L to Particles/L: Reconciling the Occurrence and Toxicity Literature on Microplastics. Environ Sci Technol. 2021;55:11470–2.
Article PubMed CAS Google Scholar
Guo S-L, Chen, B-L, Durrani, SA. Chapter 3—Solid-state nuclear track detectors. Handbook of Radioactivity Analysis. 2020;1:307–407.
Amato-Lourenco LF, Carvalho-Oliveira R, Junior GR, Dos Santos Galvao L, Ando RA, Mauad T. Presence of airborne microplastics in human lung tissue. J Hazard Mater. 2021;416:126124.
Article PubMed CAS Google Scholar
Goodman KE, Hare JT, Khamis ZI, Hua T, Sang QA. Exposure of Human Lung Cells to Polystyrene Microplastics Significantly Retards Cell Proliferation and Triggers Morphological Changes. Chem Res Toxicol. 2021;34:1069–81.
Article PubMed CAS Google Scholar
Brandenberger C, Rothen-Rutishauser B, Blank F, Gehr P, Muhlfeld C. Particles induce apical plasma membrane enlargement in epithelial lung cell line depending on particle surface area dose. Respir Res. 2009;10:22.
Article PubMed PubMed Central Google Scholar
Shi Q, Tang J, Liu X, Liu R. Ultraviolet-induced photodegradation elevated the toxicity of polystyrene nanoplastics on human lung epithelial A549 cells (Electronic supplementary information (ESI) available. Environ Sci: Nano. 2021;8:2660–75. https://doi.org/10.1039/d1en00465d
Blank F, Rothen-Rutishauser BM, Schurch S, Gehr P. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med. 2006;19:392–405.
Winkler AS, Cherubini A, Rusconi F, Santo N, Madaschi L, Pistoni C, et al. Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. Environ Int. 2022;163:107200.
Article PubMed CAS Google Scholar
Halimu G, Zhang Q, Liu L, Zhang Z, Wang X, Gu W, et al. Toxic effects of nanoplastics with different sizes and surface charges on epithelial-to-mesenchymal transition in A549 cells and the potential toxicological mechanism. J Hazard Mater. 2022;430:128485.
Article PubMed CAS Google Scholar
McCarthy J, Gong X, Nahirney D, Duszyk M, Radomski M. Polystyrene nanoparticles activate ion transport in human airway epithelial cells. Int J Nanomed. 2011;6:1343–56.
Meindl C, Ohlinger K, Zrim V, Steinkogler T, Frohlich E. Screening for Effects of Inhaled Nanoparticles in Cell Culture Models for Prolonged Exposure. Nanomaterials. 2021;11:28.
Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 2019;694:133794.
Article PubMed CAS Google Scholar
Zhang H, Zhang S, Duan Z, Wang L. Pulmonary toxicology assessment of polyethylene terephthalate nanoplastic particles in vitro. Environ Int. 2022;162:107177.
Article PubMed CAS Google Scholar
Whitwell H, Mackay RM, Elgy C, Morgan C, Griffiths M, Clark H, et al. Nanoparticles in the lung and their protein corona: the few proteins that count. Nanotoxicology. 2016;10:1385–94.
Article PubMed CAS Google Scholar
Yang S, Cheng Y, Chen Z, Liu T, Yin L, Pu Y, et al. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicol Environ Saf. 2021;226:112837.
Article PubMed CAS Google Scholar
Klimek L, Huppertz T, Alali A, Spielhaupter M, Hormann K, Matthias C, et al. A new form of irritant rhinitis to filtering facepiece particle (FFP) masks (FFP2/N95/KN95 respirators) during COVID-19 pandemic. World Allergy Organ. 2020;13:100474.
Uddin S, Fowler SW, Habibi N, Sajid S, Dupont S, Behbehani M. A Preliminary Assessment of Size-Fractionated Microplastics in Indoor Aerosol—Kuwait’s Baseline. Toxics. 2022;10:71.
Xumiao L, Prata JC, Alves JR, Duarte AC, Rocha-Santos T, Cerqueira M. Airborne microplastics and fibers in indoor residential environments in Aveiro, Portugal. Environmental Advances. 2021;6:100134.
Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut. 2017;221:453–8.
Article PubMed CAS Google Scholar
Chen Y, Li X, Zhang X, Zhang Y, Gao W, Wang R, et al. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environ Pollut. 2022;292:118465.
Article PubMed CAS Google Scholar
Xie Y, Li Y, Feng Y, Cheng W, Wang Y. Inhalable microplastics prevails in air: Exploring the size detection limit. Environ Int. 2022;162:107151.
Article PubMed CAS Google Scholar
Gaston E, Woo M, Steele C, Sukumaran S, Anderson S. Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. Appl Spectrosc. 2020;74:1079–98.
Article PubMed CAS Google Scholar
Liao Z, Ji X, Ma Y, Lv B, Huang W, Zhu X, et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J Hazard Mater. 2021;417:126007.
Article PubMed CAS Google Scholar
Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep. 2019;9:8670.
Article PubMed PubMed Central Google Scholar
Marchevsky KE, Daguerre A, Moglia MM, Crino ER. Microplastic aerobiology: A preliminary study of indoor air quality. Biocell 2021;45:91–2.
Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Sci Total Environ. 2021;757:143872.
Article PubMed CAS Google Scholar
Liu K, Wang X, Fang T, Xu P, Zhu L, Li D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ. 2019;675:462–71.
Article PubMed CAS Google Scholar
Liu K, Wang X, Wei N, Song Z, Li D. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environ Int. 2019;132:105127.
Comments (0)