Biologic Antiresorptive: Denosumab

Rosen, H., Drezner, M. Clinical manifestations, diagnosis, and evaluation of osteoporosis in postmenopausal women-UpToDate [Internet]. 2018.

Compston, J., Bowring, C., Cooper, A., et al. (2013). Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National osteoporosis guideline group (NOGG) update 2013. Maturitas, 75, 392–396.

Article  PubMed  Google Scholar 

Cosman, F., de Beur, S. J., LeBoff, M. S., et al. (2014). Clinician’s guide to prevention and treatment of osteoporosis. Osteoporosis International, 25, 2359–2381.

Article  PubMed  PubMed Central  Google Scholar 

Denosumab (Prolia): Treatment to increase bone mass in men with osteoporosis at high risk for fracture; or who have failed or are intolerant to other available osteoporosis therapy [Internet]. Ottawa (ON): Canadian agency for drugs and technologies in health; 2015 Oct.

Tsai, J., Burnett-Bowie, S., Lee, H., et al. (2017). Relationship between bone turnover and density with teriparatide, denosumab or both in women in the DATA study. Bone, 95, 20–25.

Article  PubMed  Google Scholar 

Zaheer, S., LeBoff, M., & Lewiecki, E. M. (2015). Denosumab for the treatment of osteoporosis. Expert Opinion on Drug Metabolism & Toxicology, 11, 461–470.

Article  Google Scholar 

Raisz, L. G. (1988). Hormonal regulation of bone growth and remodelling. Ciba Foundation symposium., 136, 226–238.

PubMed  Google Scholar 

Mohan, S., & Baylink, D. J. (1996). Insulin-like growth factor system components and the coupling of bone formation to resorption. Hormone research., 45(Suppl 1), 59–62.

Article  PubMed  Google Scholar 

Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., & Shi, Z. (2009). TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 15, 757–765.

Article  PubMed  PubMed Central  Google Scholar 

Xian, L., Wu, X., Pang, L., Lou, M., Rosen, C. J., Qiu, T., Crane, J., Frassica, F., Zhang, L., Rodriguez, J. P., Xiaofeng, J., Shoshana, Y., Shouhong, X., Argiris, E., Mei, W., & Xu, C. (2012). Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nature Medicine, 18, 1095–1101.

Article  PubMed  PubMed Central  Google Scholar 

Falany, M. L., Thames, A. M., 3rd., McDonald, J. M., Blair, H. C., McKenna, M. A., Moore, R. E., Young, M. K., & Williams, J. P. (2001). Osteoclasts secrete the chemotactic cytokine mim-1. Biochemical and Biophysical Research Communications, 281(1), 180–185.

Article  PubMed  Google Scholar 

Martin, T., Gooi, J. H., & Sims, N. A. (2009). Molecular mechanisms in coupling of bone formation to resorption. Critical Reviews in Eukaryotic Gene Expression, 19, 73–88.

Article  PubMed  Google Scholar 

Andersen, T. L., Sondergaard, T. E., Skorzynska, K. E., Dagnaes-Hansen, F., Plesner, T. L., Hauge, E. M., Plesner, T., & Delaisse, J. M. (2009). A physical mechanism for coupling bone resorption and formation in adult human bone. American Journal of Pathology, 174, 239–247.

Article  PubMed  PubMed Central  Google Scholar 

Gothlin, G., & Ericsson, J. L. (1976). The osteoclast: Review of ultrastructure, origin, and structure-function relationship. Clinical orthopaedics and related research., 120, 201–231.

Google Scholar 

Walker, D. G. (1973). Osteopetrosis cured by temporary parabiosis. Science, 180, 875.

Article  PubMed  Google Scholar 

Kahn, A. J., & Simmons, D. J. (1975). Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature, 258, 325–327.

Article  PubMed  Google Scholar 

Walker, D. G. (1975). Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science, 190, 784–785.

Article  PubMed  Google Scholar 

Walker, D. G. (1975). Spleen cells transmit osteopetrosis in mice. Science, 190, 785–787.

Article  PubMed  Google Scholar 

Scheven, B. A., Visser, J. W., & Nijweide, P. J. (1986). In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature, 321, 79–81.

Article  PubMed  Google Scholar 

Kondo, M., Wagers, A. J., Manz, M. G., Prohaska, S. S., Scherer, D. C., Beilhack, G. F., Shizuru, J. A., & Weissman, I. L. (2003). Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annual Review of Immunology, 21, 759–806.

Article  PubMed  Google Scholar 

Metcalf, D. (2008). Hematopoietic cytokines. Blood, 111(2), 485–491.

Article  PubMed  PubMed Central  Google Scholar 

Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N., & Suda, T. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/ANKL. Proc Natl Acad Sci U S A., 95, 3597–3602.

Article  PubMed  PubMed Central  Google Scholar 

Matsuzaki, K., Udagawa, N., Takahashi, N., Yamaguchi, K., Yasuda, H., Shima, N., Morinaga, T., Toyama, Y., Yabe, Y., Higashio, K., & Suda, T. (1998). Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and Biophysical Research Communications, 246, 199–204.

Article  PubMed  Google Scholar 

Metcalf, D. (1970). Studies on colony formation in vitro by mouse bone marrow cells. II. Action of colony stimulating factor. Journal of Cellular Physiology, 76, 89–99.

Article  PubMed  Google Scholar 

Xaus, J., Comalada, M., Valledor, A. F., Cardó, M., Herrero, C., Soler, C., Lloberas, J., & Celada, A. (2001). Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology, 204, 543–550.

Article  PubMed  Google Scholar 

Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., … Boyle, W. J. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–176.

Article  PubMed  Google Scholar 

Anderson, D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D., & Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390, 175–179.

Article  PubMed  Google Scholar 

Bucay, N., Sarosi, I., Dunstan, C. R., Morony, S., Tarpley, J., Capparelli, C., Scully, S., Tan, H. L., Xu, W., Lacey, D. L., Boyle, W. J., & Simonet, W. S. (1998). osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes & Development, 12, 1260–1268.

Article  Google Scholar 

Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Lüthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H. L., Trail, G., Sullivan, J., Davy, E., Bucay, N., … Boyle, W. J. (1997). Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 89, 309–319.

Article  PubMed  Google Scholar 

Lum, L., Wong, B. R., Josien, R., Becherer, J. D., Erdjument-Bromage, H., Schlöndorff, J., Tempst, P., Choi, Y., & Blobel, C. P. (1999). Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzymelike protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. Journal of Biological Chemistry, 274, 13613–13618.

Article  PubMed  Google Scholar 

Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H., & Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Molecular Cell, 4, 1041–1049.

Article  PubMed  Google Scholar 

Amgen, Inc. Prolia (denosumab) prescribing information. 2010 updated 2014.

Bekker, P., Holloway, D., Rasmussen, A., et al. (2004). A single-dose placebo-controlled study of AMG 162, a fully monoclonal antibody to RANKL, in postmenopausal women. Journal of Bone and Mineral Research, 19(7), 1059–1066.

Article  PubMed  Google Scholar 

Sutjandra, L., Rodriguez, R., Doshi, S., et al. (2011). Population pharmacokinetic metaanalysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clinical Pharmacokinetics, 50(12), 793–807.

Article  PubMed  Google Scholar 

Block, G., Bone, H., Fang, L., et al. (2012). A single-dose study of denosumab in patients with various degrees of renal impairment. Journal of Bone and Mineral Research, 27(7), 1471–1479.

Article  PubMed  Google Scholar 

Miller, P., Bolognese, M., Lewiecki, E., et al. (2008). Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: A randomized blinded phase 2 clinical trial. Bone, 43(2), 222–229.

Article  PubMed  Google Scholar 

Cummings, S., San Martin, J., Mcclung, M., et al. (2009). Denosumab for prevention of fractures in postmenpausal women with osteoporosis. New England Journal of Medicine, 361(8), 756–765.

Article  PubMed  Google Scholar 

Papapoulos, S., Lippuner, K., Roux, C., Lin, C. J., Kendler, D. L., Lewiecki, E. M., Brandi, M. L., Czerwiński, E., Franek, E., Lakatos, P., Mautalen, C., Minisola, S., Reginster, J. Y., Jensen, S., Daizadeh, N. S., Wang, A., Gavin, M., Libanati, C., Wagman, R. B., & Bone, H. G. (2015). The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporosis International, 26(12), 2773–2783.

Article  PubMed  PubMed Central  Google Scholar 

Brown, J., Roux, C., Torring, O., et al. (2013). Discontinuation of denosumab and associated fracture incidence: analysis from the fracture reduction evaluation of denosumab in osteoporosis every 6 months (FREEDOM) trial. Journal of Bone and Mineral Research, 28(4), 746–752.

Article  PubMed  Google Scholar 

Brown, J., Reid, I., Wagon, R., et al. (2014). Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. Journal of Bone and Mineral Research, 29(9), 2051–2056.

Article  PubMed  Google Scholar 

Orwoll, E., Teglbjærg, C., Langdahl, B., et al. (2012). A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. Journal of Clinical Endocrinology and Metabolism, 97(9), 3161–3169.

留言 (0)

沒有登入
gif