The role of angiotensin receptor blockers in treating epilepsy: a review

Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393(10172):689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

Article  PubMed  Google Scholar 

“Epilepsy.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/epilepsy. Accessed: 18 Oct 2023

Falco-Walter J (2020) Epilepsy-definition, classification, pathophysiology, and epidemiology. Semin Neurol 40(6):617–623. https://doi.org/10.1055/s-0040-1718719

Article  PubMed  Google Scholar 

“Epilepsy.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/epilepsy. Accessed: 08 Jul 2023

“Epilepsy: a clinical overview - PubMed.” [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/33775643/. Accessed: 18 Oct 2023

“The role of genetic testing in epilepsy diagnosis and management: expert review of molecular diagnostics: Vol 17, No 8.” [Online] Available: https://www.tandfonline.com/doi/full/10.1080/14737159.2017.1335598. Accessed: 08 Jul 2023

“Diagnosis and treatment of epilepsy | psychiatric services.” [Online]. Available: https://ps.psychiatryonline.org/doi/abs/10.1176/ps.34.6.540. Accessed: 08 Jul 2023

RK Banote, S Akel, J Zelano (2022) “Blood biomarkers in epilepsy”. Acta Neurol Scand 146(4). https://doi.org/10.1111/ane.13616

“The natural history and prognosis of epilepsy - Beghi - 2015 - Epileptic Disorders - Wiley Online Library.” [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1684/epd.2015.0751. Accessed: 18 Oct 2023

Perucca P, Scheffer IE, Kiley M (2018) The management of epilepsy in children and adults. Med J Aust 208(5):226–233. https://doi.org/10.5694/mja17.00951

Article  PubMed  Google Scholar 

“Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options | pharmacological reviews.” [Online]. Available: https://pharmrev.aspetjournals.org/content/72/3/606. Accessed: 08 Jul 2023

Mesraoua B et al (2019) Novel therapies for epilepsy in the pipeline. Epilepsy Behav 97:282–290. https://doi.org/10.1016/j.yebeh.2019.04.042

Article  PubMed  Google Scholar 

“Neuromodulation in epilepsy: state-of-the-art approved therapies - The Lancet Neurology.” [Online]. Available: https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(21)00300-8/fulltext. Accessed: 08 Jul 2023

“IJMS | Free Full-Text | Role of the angiotensin pathway and its target therapy in epilepsy management.” [Online]. Available: https://www.mdpi.com/1422-0067/20/3/726. Accessed: 08 Jul 2023

Doege C, Luedde M, Kostev K (2022) Association between angiotensin receptor blocker therapy and incidence of epilepsy in patients with hypertension. JAMA Neurol 79(12):1296–1302. https://doi.org/10.1001/jamaneurol.2022.3413

Article  PubMed  PubMed Central  Google Scholar 

“Angiotensin receptor blockers: new considerations in their mechanism of action - Sica - 2006 - The Journal of Clinical Hypertension - Wiley Online Library.” [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1111/j.1524-6175.2005.05141.x. Accessed: 08 Jul 2023

Patel S, Rauf A, Khan H, Abu-Izneid T (2017) Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 94:317–325. https://doi.org/10.1016/j.biopha.2017.07.091

Article  PubMed  Google Scholar 

“Angiotensin II causes neuronal damage in stretch-injured neurons: protective effects of losartan, an angiotensin T1 receptor blocker | SpringerLink.” [Online]. Available: https://link.springer.com/article/10.1007/s12035-017-0812-z. Accessed: 08 Jul 2023

“Angiotensin II revisited: new roles in inflammation, immunology and aging | EMBO Molecular Medicine.” [Online]. Available: https://www.embopress.org/doi/full/10.1002/emmm.201000080. Accessed: 08 Jul 2023

“Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities | SpringerLink.” [Online]. Available: https://link.springer.com/article/10.1007/s10571-005-4011-5. Accessed: 08 Jul 2023

Wright JW, Harding JW (2011) Brain renin-angiotensin—a new look at an old system. Prog Neurobiol 95(1):49–67. https://doi.org/10.1016/j.pneurobio.2011.07.001

Article  PubMed  Google Scholar 

Singh KD, Karnik SS (2016) Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal 1(2):111. https://doi.org/10.4172/jcs.1000111

Article  PubMed  PubMed Central  Google Scholar 

“Neuroprotective effects of angiotensin receptor blockers | American Journal of Hypertension | Oxford Academic.” [Online]. Available: https://academic.oup.com/ajh/article/28/3/289/145322. Accessed: 08 Jul 2023

“The renin-angiotensin system and the cerebrovascular diseases: experimental and clinical evidence | Bentham Science.” [Online]. Available: https://www.eurekaselect.com/article/103034. Accessed: 08 Jul 2023

“Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen–glucose depletion - Wu - 2010 - British Journal of Pharmacology - Wiley Online Library.” [Online]. Available: https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2010.00840.x. Accessed: 18 Oct 2023

Rodriguez-Perez AI et al (2018) Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics 15(4):1063–1081. https://doi.org/10.1007/s13311-018-0646-z

Article  PubMed  PubMed Central  Google Scholar 

ArrazolaSastre A et al (2020) Small GTPases of the Ras and Rho families switch on/off signaling pathways in neurodegenerative diseases. Int J Mol Sci 21(17):6312. https://doi.org/10.3390/ijms21176312

Article  Google Scholar 

Qu L et al (2019) The Ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front Mol Neurosci 12:121. https://doi.org/10.3389/fnmol.2019.00121

Article  PubMed  PubMed Central  Google Scholar 

“Inhibition of the renin–angiotensin system prevents seizures in a rat model of epilepsy | Clinical Science | Portland Press.” [Online]. Available: https://portlandpress.com/clinsci/article-abstract/119/11/477/68702/Inhibition-of-the-renin-angiotensin-system?redirectedFrom=fulltext. Accessed: 08 Jul 2023

Gouveia TLF et al (2012) The levels of renin–angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int 61(1):54–62. https://doi.org/10.1016/j.neuint.2012.04.012

Article  PubMed  Google Scholar 

Argañaraz GA et al (2008) The renin-angiotensin system is upregulated in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis. Epilepsia 49(8):1348–1357. https://doi.org/10.1111/j.1528-1167.2008.01581.x

Article  PubMed  Google Scholar 

Ivanova N, Tchekalarova J (2019) The potential therapeutic capacity of inhibiting the brain renin–angiotensin system in the treatment of co-morbid conditions in epilepsy. CNS Drugs 33(11):1101–1112. https://doi.org/10.1007/s40263-019-00678-4

Article  PubMed  Google Scholar 

Tchekalarova JD et al (2014) Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol Biochem Behav 127:27–36. https://doi.org/10.1016/j.pbb.2014.10.005

Article  PubMed  Google Scholar 

Tchekalarova JD et al (2016) Long-term treatment with losartan attenuates seizure activity and neuronal damage without affecting behavioral changes in a model of co-morbid hypertension and epilepsy. Cell Mol Neurobiol 36(6):927–941. https://doi.org/10.1007/s10571-015-0278-3

Article  PubMed  Google Scholar 

“Dzau VJ, Bernstein K, Celermajer D, Cohen J, Dahlöf B, Deanfeld J et al (2001) The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data. Am J Cardiol 88:1–20. https://doi.org/10.1016/S0002-9149(01)01878-1.-Google Search.” Accessed: Jul. 08, 2023. [Online]. Available: https://www.google.com/search?q=Dzau+VJ/2C+Bernstein+K/2C+Celermajer+D/2C+Cohen+J/2C+Dahl/C3/B6f+B/2C+Deanfeld+J/2C+et+al.+The+relevance+of+tissue+angiotensin-converting+enzyme/3A+manifestations+in+mechanistic+and+endpoint+data.+Am+J+Cardiol.+2001/3B88/3A1/E2/80/9320.+https/3A/2F/2Fdoi.org/2F10.1016/2FS0002+-9149(01)01878-1&oq=Dzau+VJ/2C+Bernstein+K/2C+Celermajer+D/2C+Cohen+J/2C+Dahl/C3/B6f+B/2C+Deanfeld+J/2C+et+al.+The+relevance+of+tissue+angiotensin-converting+enzyme/3A+manifestations+in+mechanistic+and+endpoint+data.+Am+J+Cardiol.+2001/3B88/3A1/E2/80/9320.+https/3A/2F/2Fdoi.org/2F10.1016/2FS0002+-9149(01)01878-1&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCDg3MjdqMGo0qAIAsAIA&sourceid=chrome&ie=UTF-8

Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press 12(2):70–88. https://doi.org/10.1080/08037050310001057

Article  PubMed  Google Scholar 

“Update on the role of the AT2 receptor : current opinion in nephrology and hypertension.” [Online]. Available: https://journals.lww.com/co-nephrolhypertens/Abstract/2005/01000/Update_on_the_role_of_the_AT2_receptor.11.aspx. Accessed: 08 Jul 2023

“Elucidating the potential side effects of current anti-seizure drugs for epilepsy | Bentham Science.” [Online]. Available: https://www.eurekaselect.com/article/117497. Accessed: 08 Jul 2023

“Should losartan be administered following brain injury?: Expert review of neurotherapeutics: Vol 14, No 12.” [Online]. Available: https://www.tandfonline.com/doi/abs/10.1586/14737175.2014.972945. Accessed: 08 Jul 2023

Tchekalarova J, Loyens E, Smolders I (2015) Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats. Epilepsy Behav 46:66–71. https://doi.org/10.1016/j.yebeh.2015.03.021

Article  PubMed  Google Scholar 

“Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus | PLOS ONE.” [Online]. Available: https://journals.plos.org/plosone/article?id=https://doi.org/10.1371/journal.pone.0033527 . Accessed: 08 Jul 2023

Klein P et al (2020) Repurposed molecules for antiepileptogenesis: missing an opportunity to prevent epilepsy? Epilepsia 61(3):359–386. https://doi.org/10.1111/epi.16450

Article  PubMed  PubMed Central  Google Scholar 

“Telmisartan as an add-on treatment for dogs with refractory idiopathic epilepsy: a nonrandomized, uncontrolled, open-label clinical trial in: Journal of the American Veterinary Medical Association Volume 260 Issue 7 (2022).” [Online]. Available: https://avmajournals.avma.org/view/journals/javma/260/7/javma.20.12.0683.xml. Accessed: 08 Jul 2023

“Effect of ACE inhibitors and AT1 receptor antagonists on pentylenetetrazole-induced convulsions in mice | SpringerLink.” [Online]. Available: https://link.springer.com/article/10.1007/s10072-014-2040-x. Accessed: 08 Jul 2023

“Losartan prevents acquired epilepsy via TGF‐β signaling suppression - Bar‐Klein - 2014 - Annals of Neurology - Wiley Online Library.” Accessed: Jul. 08, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/ana.24147

Reyes-Garcia SZ, Scorza CA, Ortiz-Villatoro NN, Cavalheiro EA (2019) Losartan fails to suppress epileptiform activity in brain slices from resected tissues of patients with drug resistant epilepsy. J Neurol Sci 397:169–171. https://doi.org/10.1016/j.jns.2019.01.008

Article  PubMed  Google Scholar 

Russo E et al (2017) Cerebral small vessel disease predisposes to temporal lobe epilepsy in spontaneously hypertensive rats. Brain Res Bull 130:245–250. https://doi.org/10.1016/j.brainresbull.2017.02.003

Article  PubMed  Google Scholar 

R. Yang et al., “Drug interactions with angiotensin receptor blockers: role of human cytochromes P450,” Curr. Drug Metab., vol. 17, no. 7, pp. 681–691. [Online]. Available: https://www.eurekaselect.com/article/75897. Accessed: 09 Jul 2023

Zhao M et al (2021) Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci 22(23):12808. https://doi.org/10.3390/ijms222312808

Article  PubMed  PubMed Central  Google Scholar 

Łukawski K, Janowska A, Jakubus T, Tochman-Gawda A, Czuczwar SJ (2010) Angiotensin AT1 receptor antagonists enhance the anticonvulsant action of valproate in the mouse model of maximal electroshock. Eur J Pharmacol 640(1):172–177. https://doi.org/10.1016/j.ejphar.2010.04.053

Article  PubMed  Google Scholar 

“Interactions between angiotensin AT1 receptor antagonists and second‐generation antiepileptic drugs in the test of maximal electroshock - Łukawski - 2014 - Fundamental & Clinical Pharmacology - Wiley Online Library.” [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1111/fcp.12023. Accessed: 08 Jul 2023

Łukawski K, Janowska A, Jakubus T, Raszewski G, Czuczwar SJ (2013) Combined treatment with gabapentin and drugs affecting the renin–angiotensin system against electroconvulsions in mice. Eur J Pharmacol 706(1):92–97. https://doi.org/10.1016/j.ejphar.2013.02.054

Article  PubMed  Google Scholar 

Łukawski K, Raszewski G, Czuczwar SJ (2014) Interactions between levetiracetam and cardiovascular drugs against electroconvulsions in mice. Pharmacol Rep 66(6):1100–1105. https://doi.org/10.1016/j.pharep.2014.07.008

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif