Merocyanines form bacteriorhodopsins with strongly bathochromic absorption maxima

Lanyi, J. K. (1997). Mechanism of ion transport across membranes: Bacteriorhodopsin as a prototype for proton pumps. Journal of Biological Chemistry, 272(50), 31209–31212.

Article  CAS  PubMed  Google Scholar 

Haupts, U., Tittor, J., & Oesterhelt, D. (1999). Closing in on bacteriorhodopsin: Progress in understanding the molecule. Annual Review of Biophysics and Biomolecular Structure, 28(1), 367–399.

Article  CAS  PubMed  Google Scholar 

Landau, E. M., Pebay-Peyroula, E., & Neutze, R. (2003). Structural and mechanistic insight from high resolution structures of archaeal rhodopsins. FEBS Letters, 555(1), 51–56.

Article  CAS  PubMed  Google Scholar 

Oesterhelt, D. (1998). The structure and mechanism of the family of retinal proteins from halophilic archaea. Current Opinion in Structural Biology, 8(4), 489–500.

Article  CAS  PubMed  Google Scholar 

Nakanishi, K., Balogh-Nair, V., Arnaboldi, M., Tsujimoto, K., & Honig, B. (1980). An external point-charge model for bacteriorhodopsin to account for its purple color. Journal of the American Chemical Society, 102(27), 7945–7947.

Article  CAS  Google Scholar 

Schulten, K., Dinur, U., & Honig, B. (2008). The spectra of carbonium ions, cyanine dyes, and protonated Schiff base polyenes. The Journal of Chemical Physics, 73(8), 3927–3935.

Article  Google Scholar 

Honig, B., Greenberg, A. D., Dinur, U., & Ebrey, T. G. (1976). Visual-pigment spectra: Implications of the protonation of the retinal Schiff base. Biochemistry, 15(21), 4593–4599.

Article  CAS  PubMed  Google Scholar 

Kropf, A., & Hubbard, R. (1958). The mechanism of bleaching rhodopsin. Annals of the New York Academy of Sciences, 74(2), 266–280.

Article  CAS  Google Scholar 

Balogh-Nair, V., Carriker, J. D., Honig, B., Kamat, V., Motto, M. G., Nakanishi, K., Sen, R., Sheves, M., Tanis, M. A., & Tsujimoto, K. (1981). The ‘Opsin Shift’ in bacteriorhodopsin: Studies with artificial bacteriorhodopsins. Photochemistry and Photobiology, 33(4), 483–488.

Article  CAS  Google Scholar 

Honig, B., Dinur, U., Nakanishi, K., Balogh-Nair, V., Gawinowicz, M. A., Arnaboldi, M., & Motto, M. G. (1979). An external point-charge model for wavelength regulation in visual pigments. Journal of the American Chemical Society, 101(23), 7084–7086.

Article  CAS  Google Scholar 

Nakanishi, K., Balogh-Nair, V., Gawinowicz, M. A., Arnaboldi, M., Motto, M., & Honig, B. (1979). Double point charge model for visual pigments; Evidence from dihydrorhodopsins. Photochemistry and Photobiology, 29(4), 657–660.

Article  CAS  PubMed  Google Scholar 

Kakitani, H., Kakitani, T., Rodman, H., & Honig, B. (1985). On the mechanism of wavelength regulation in visual pigments. Photochemistry and Photobiology, 41(4), 471–479.

Article  CAS  PubMed  Google Scholar 

Rajamani, R., & Gao, J. (2002). Combined QM/MM study of the opsin shift in bacteriorhodopsin. Journal of Computational Chemistry, 23(1), 96–105.

Article  CAS  PubMed  Google Scholar 

Rajamani, R., Lin, Y.-L., & Gao, J. (2011). The opsin shift and mechanism of spectral tuning in rhodopsin. Journal of Computational Chemistry, 32(5), 854–865.

Article  CAS  PubMed  Google Scholar 

Irving, C. S., Byers, G. W., & Leermakers, P. A. (1970). Spectroscopic model for the visual pigments. Influence of microenvironmental polarizability. Biochemistry, 9(4), 858–864.

CAS  PubMed  Google Scholar 

Yan, B., Spudich, J. L., Mazur, P., Vunnam, S., Derguini, F., & Nakanishi, K. (1995). Spectral tuning in bacteriorhodopsin in the absence of counterion and coplanarization effects. Journal of Biological Chemistry, 270(50), 29668–29670.

Article  CAS  PubMed  Google Scholar 

Houjou, H., Inoue, Y., & Sakurai, M. (1998). Physical origin of the opsin shift of bacteriorhodopsin. Comprehensive analysis based on medium effect theory of absorption spectra. Journal of the American Chemical Society, 120(18), 4459–4470.

Article  CAS  Google Scholar 

Mathies, R. A., Lin, S. W., Ames, J. B., & Pollard, W. T. (1991). From femtoseconds to biology: Mechanism of bacteriorhodopsin’s light-driven proton pump. Annual Review of Biophysics and Biophysical Chemistry, 20(1), 491–518.

Article  CAS  PubMed  Google Scholar 

Van der Steen, R., Biesheuvel, P. L., Mathies, R. A., & Lugtenburg, J. (1986). Retinal analogs with locked 6–7 conformations show that bacteriorhodopsin requires the 6-s-trans conformation of the chromophore. Journal of the American Chemical Society, 108(20), 6410–6411.

Article  Google Scholar 

Harbison, G. S., Smith, S. O., Pardoen, J. A., Courtin, J. M. L., Lugtenburg, J., Herzfeld, J., Mathies, R. A., & Griffin, R. G. (1985). Solid-state carbon-13 NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry, 24(24), 6955–6962.

Article  CAS  PubMed  Google Scholar 

Wada, M., Sakurai, M., Inoue, Y., Tamura, Y., & Watanabe, Y. (1994). Ab initio study of 13C NMR chemical shifts for the chromophores of rhodopsin and bacteriorhodopsin. 1. Theoretical estimation of their ring-chain conformations. Journal of the American Chemical Society, 116(4), 1537–1545.

Article  CAS  Google Scholar 

Borshchevskiy, V., Kovalev, K., Round, E., Efremov, R., Astashkin, R., Bourenkov, G., Bratanov, D., Balandin, T., Chizhov, I., Baeken, C., Gushchin, I., Kuzmin, A., Alekseev, A., Rogachev, A., Willbold, D., Engelhard, M., Bamberg, E., Büldt, G., & Gordeliy, V. (2022). True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins. Nature Structural & Molecular Biology, 29(5), 440–450.

Article  CAS  Google Scholar 

Wickstrand, C., Dods, R., Royant, A., & Neutze, R. (2015). Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(3), 536–553.

Article  CAS  PubMed  Google Scholar 

Nakanishi, K., & Crouch, R. (1995). Application of artificial pigments to structure determination and study of photoinduced transformations of retinal proteins. Israel Journal of Chemistry, 35(3–4), 253–272.

Article  CAS  Google Scholar 

van der Steen, R., Biesheuvel, P. L., Lugtenburg, J., Erkelens, C., & Mathies, R. A. (1989). 8,16- and 8,18-methanobacteriorhodopsin. Synthesis and spectroscopy of 8,16- and 8,18-methanoretinal and their interaction with bacterioopsin. Recueil des Travaux Chimiques des Pays-Bas, 108(3), 83–93.

Article  Google Scholar 

Albeck, A., Livnah, N., Gottlieb, H., & Sheves, M. (1992). Carbon-13 NMR studies of model compounds for bacteriorhodopsin: Factors affecting the retinal chromophore chemical shifts and absorption maximum. Journal of the American Chemical Society, 114(7), 2400–2411.

Article  CAS  Google Scholar 

Singh, A. K., Das, J., & Majumdar, N. (1996). Novel bacteriorhodopsin analogues based on azo chromophores. Journal of the American Chemical Society, 118(26), 6185–6191.

Article  CAS  Google Scholar 

de Grip, W. J., & Ganapathy, S. (2022). Rhodopsins: An excitingly versatile protein species for research, development and creative engineering. Frontiers in Chemistry, 10, 879609.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crouch, R. K. (1986). Studies of rhodopsin and bacteriorhodopsin using modified retinals. Photochemistry and Photobiology, 44(6), 803–807.

Article  CAS  PubMed  Google Scholar 

Ottolenghi, M., & Sheves, M. (1989). Synthetic retinals as probes for the binding site and photoreactions in rhodopsins. The Journal of Membrane Biology, 112(3), 193–212.

Article  CAS  PubMed  Google Scholar 

de Grip, W. J., van Oostrum, J., Bovee-Geurts, P. H. M., van der Steen, R., van Amsterdam, L. J. P., Groesbeek, M., & Lugtenburg, J. (1990). 10,20-Methanorhodopsins: (7E, 9E, 13E)-10, 20-methanorhodopsin and (7E, 9Z, 13Z)-10, 20-methanorhodopsin. European Journal of Biochemistry, 191(1), 211–220.

Article  PubMed  Google Scholar 

Liu, R. S. H., Krogh, E., Li, X.-Y., Mead, D., Colmenares, L. U., Thiel, J. R., Ellis, J., Wong, D., & Asato, A. E. (1993). Analyzing the red-shift characteristics of azulenic, naphthyl, other ring-fused and retinyl pigment analogs of bacteriorhodopsin. Photochemistry and Photobiology, 58(5), 701–705.

Article  CAS  PubMed  Google Scholar 

Tierno, M. E., Mead, D., Asato, A. E., Liu, R. S. H., Sekiya, N., Yoshihara, K., Chang, C. W., Nakanishi, K., Govindjee, R., & Ebrey, T. G. (1990). 14-Fluorobacteriorhodopsin and other fluorinated and 14-substituted analogs. An extra, unusually red-shifted pigment formed during dark adaptation. Biochemistry, 29(25), 5948–5953.

Article  CAS  PubMed  Google Scholar 

Motto, M. G., Sheves, M., Tsujimoto, K., Balogh-Nair, V., & Nakanishi, K. (1980). Opsin shifts in bovine rhodopsin and bacteriorhodopsin. Comparison of two external point-charge models. Journal of the American Chemical Society, 102(27), 7947–7949.

Article  CAS  Google Scholar 

Hoischen, D., Steinmüller, S., Gärtner, W., Buss, V., & Martin, H.-D. (1997). Merocyanines as extremely bathochromically absorbing chromophores in the halobacterial membrane protein bacteriorhodopsin. Angewandte Chemie International Edition in English, 36(15), 1630–1633.

Article  CAS  Google Scholar 

Sheves, M., Friedman, N., Albeck, A., & Ottolenghi, M. (1985). Primary photochemical event in bacteriorhodopsin: Study with artificial pigments. Biochemistry, 24(5), 1260–1265.

Article  CAS  Google Scholar 

Tavan, P., Schulten, K., & Oesterhelt, D. (1985). The effect of protonation and electrical interactions on the stereochemistry of retinal Schiff bases. Biophysical Journal, 47(3), 415–430.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif