The effect of substituent position and solvent on thermal Z‒E isomerization of dihydroquinolylazotetrazole dyes: kinetic, thermodynamic, and spectral approaches

Merino, E. (2011). Synthesis of azobenzenes: The coloured pieces of molecular materials. Chemical Society Reviews, 40, 3835–3853. https://doi.org/10.1039/C0CS00183J

Article  CAS  PubMed  Google Scholar 

Liu, Z. F., Hashimoto, K., & Fujishima, A. (1990). Photoelectrochemical information storage using an azobenzene derivative. Nature, 347, 658–660. https://doi.org/10.1038/347658a0

Article  CAS  Google Scholar 

Selivanova, G. A. (2021). Azo chromophores for nonlinear-optical application. Russian Chemical Bulletin, 70, 213–238. https://doi.org/10.1007/s11172-021-3080-z

Article  CAS  Google Scholar 

Arkhipova, V., Fu, H., Hoorens, M. W. H., Trinco, G., Lameijer, L. N., Marin, E., et al. (2021). Structural aspects of photopharmacology: Insight into the binding of photoswitchable and photocaged inhibitors to the glutamate transporter homologue. Journal of the American Chemical Society, 143, 1513–1520. https://doi.org/10.1021/jacs.0c11336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jerca, F. A., Jerca, V. V., & Hoogenboom, R. (2022). Advances and opportunities in the exciting world of azobenzenes. Nature Reviews Chemistry, 6(1), 51–69. https://doi.org/10.1038/s41570-021-00334-w

Article  PubMed  Google Scholar 

Fedele, C., Ruoko, T.-P., Kuntze, K., Virkki, M., & Priimagi, A. (2022). New tricks and emerging applications from contemporary azobenzene research. Photochemical & Photobiological Sciences, 21, 1719–1734. https://doi.org/10.1007/s43630-022-00262-8

Article  CAS  Google Scholar 

Garcia-Amorós, J., Castro, M. C. R., Coelho, P., Raposo, M. M. M., & Velasco, D. (2013). New heterocyclic systems to afford microsecond green-light isomerisable azo dyes and their use as fast molecular photochromic switches. Chemical Communications, 49, 11427–11429. https://doi.org/10.1039/c3cc46736h

Article  CAS  PubMed  Google Scholar 

Ikeda, T., & Tsutsumi, O. (1995). Optical switching and image storage by means of azobenzene liquid-crystal films. Science, 268, 1873–1875. https://doi.org/10.1126/science.268.5219.1873

Article  CAS  PubMed  Google Scholar 

Samanta, S., McCormick, T. M., Schmidt, S. K., Seferos, D. S., & Woolley, G. A. (2013). Robust visible light photoswitching with ortho-thiol substituted azobenzenes. Chemical Communications, 49, 10314–10316. https://doi.org/10.1039/C3CC46045B

Article  CAS  PubMed  Google Scholar 

Dudek, M., Kaczmarek-Kędziera, A., Deska, R., Trojnar, J., Jasik, P., Młynarz, P., et al. (2022). Linear and nonlinear optical properties of azobenzene derivatives modified with an (amino)naphthalene moiety. Journal of Physical Chemistry B, 126(32), 6063–6073. https://doi.org/10.1021/acs.jpcb.2c03078

Article  CAS  PubMed  Google Scholar 

Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A., & Woolley, G. A. (2015). Red-shifting azobenzene photoswitches for in vivo use. Accounts of Chemical Research, 48, 2662–2670. https://doi.org/10.1021/acs.accounts.5b00270

Article  CAS  PubMed  Google Scholar 

Lameijer, L. N., Budzak, S., Simeth, N. A., Hansen, M. J., Feringa, B. L., Jacquemin, D., et al. (2020). General principles for the design of visible-light-responsive photoswitches: Tetra-ortho-chloro-azobenzenes. Angewandte Chemie International Edition, 59, 21663–21670. https://doi.org/10.1002/anie.202008700

Article  CAS  PubMed  Google Scholar 

Aleotti, F., Nenov, A., Salvigni, L., Bonfanti, M., El-Tahawy, M. M., Giunchi, A., et al. (2020). Spectral tuning and photoisomerization efficiency in push-pull azobenzenes: Designing principles. Journal of Physical Chemistry A, 124, 9513–9523. https://doi.org/10.1021/acs.jpca.0c08672

Article  CAS  PubMed  Google Scholar 

Knie, C., Utecht, M., Zhao, F., Kulla, H., Kovalenko, S., Brouwer, A. M., et al. (2014). ortho-Fluoroazobenzenes: Visible light switches with very long-lived Z isomers. Chemistry: A European Journal, 20, 16492–16501. https://doi.org/10.1002/chem.201404649

Article  CAS  PubMed  Google Scholar 

Kuntze, K., Viljakka, J., Titov, E., Ahmed, Z., Kalenius, E., Saalfrank, P., et al. (2022). Towards low-energy-light-driven bistable photoswitches: Ortho-fluoroaminoazobenzenes. Photochemical & Photobiological Sciences, 21, 159–173. https://doi.org/10.1007/s43630-021-00145-4

Article  CAS  Google Scholar 

Crespi, S., Simeth, N. A., & König, B. (2019). Heteroaryl azo dyes as molecular photoswitches. Nature Reviews Chemistry, 3, 133–146. https://doi.org/10.1038/s41570-019-0074-6

Article  CAS  Google Scholar 

Calbo, J., Weston, C. E., White, A. J. P., Rzepa, H. S., Contreras-García, J., & Fuchter, M. J. (2017). Tuning azoheteroarene photoswitch performance through heteroaryl design. Journal of the American Chemical Society, 139, 1261–1274. https://doi.org/10.1021/jacs.6b11626

Article  CAS  PubMed  Google Scholar 

Devi, S., Saraswat, M., Grewal, S., & Venkataramani, S. (2018). Evaluation of substituent effect in Z-isomer stability of arylazo-1H-3,5- dimethylpyrazoles—Interplay of steric, electronic effects and hydrogen bonding. The Journal of Organic Chemistry, 83, 4307–4322. https://doi.org/10.1021/acs.joc.7b02604

Article  CAS  PubMed  Google Scholar 

Calbo, J., Thawani, A. R., Gibson, R. S. L., White, A. J. P., & Fuchter, M. J. (2019). A combinatorial approach to improving the performance of azoarene photoswitches. Beilstein Journal of Organic Chemistry, 15, 2753–2764. https://doi.org/10.3762/bjoc.15.266

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heindl, A. H., & Wegner, H. A. (2020). Rational design of azothiophenes—Substitution effects on the switching properties. Chemistry: A European Journal, 26, 13730–13737. https://doi.org/10.1002/chem.202001148

Article  CAS  PubMed  Google Scholar 

van Eldik, R., Asano, T., & Le Noble, W. J. (1989). Activation and reaction volumes in solution. 2. Chemical Reviews, 89(3), 549–688. https://doi.org/10.1021/cr00093a005

Article  Google Scholar 

Asano, T., Okada, T., Shinkai, S., Shigematsu, K., Kusano, Y., & Manabe, O. (1981). Temperature and pressure dependences of thermal cis-to-trans isomerization of azobenzenes which evidence an inversion mechanism. Journal of the American Chemical Society, 103(17), 5161–5165. https://doi.org/10.1021/ja00407a034

Article  CAS  Google Scholar 

Asano, T., & Okada, T. (1986). Further kinetic evidence for the competitive rotational and inversional Z–E isomerization of substituted azobenzenes. The Journal of Organic Chemistry, 51(23), 4454–4458. https://doi.org/10.1021/jo00373a021

Article  CAS  Google Scholar 

Shin, D. M., & Whitten, D. G. (1988). Solvent-induced mechanism change in charge-transfer molecules. inversion versus rotation paths for the Z–E isomerization of donor–acceptor substituted azobenzenes. Journal of the American Chemical Society, 110, 5206–5208. https://doi.org/10.1021/ja00223a058

Article  CAS  Google Scholar 

Garcia-Amorós, J., Stopa, G., Stochel, G., van Eldik, R., Martinez, M., & Velasco, D. (2018). Activation volumes for cis-to-trans isomerisation reactions of azophenols. A clear mechanistic indicator? Physical Chemistry Chemical Physics, 20, 1286–1292. https://doi.org/10.1039/C7CP07349F

Article  PubMed  Google Scholar 

Muždalo, A., Saalfrank, P., Vreede, J., & Santer, M. (2018). Cis-to-trans isomerization of azobenzene derivatives studied with transition path sampling and quantum mechanical/molecular mechanical molecular dynamics. Journal of Chemical Theory and Computation, 14, 2042–2051.

Article  PubMed  Google Scholar 

Dokić, J., Gothe, M., Wirth, J., Peters, M. V., Schwarz, J., Hecht, S., et al. (2009). Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: Substituent effects, solvent effects, and comparison to experimental data. Journal of Physical Chemistry A, 113, 6763–6773. https://doi.org/10.1021/jp9021344

Article  CAS  PubMed  Google Scholar 

Rietze, C., Titov, E., Lindner, S., & Saalfrank, P. (2017). Thermal isomerization of azobenzenes: On the performance of eyring transition state theory. Journal of Physics: Condensed Matter, 29, 314002. https://doi.org/10.1088/1361-648X/aa75bd

Article  PubMed  Google Scholar 

Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L., & Orlandi, G. (2004). On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. Journal of the American Chemical Society, 126, 3234–3243. https://doi.org/10.1021/ja038327y

Article  CAS  PubMed  Google Scholar 

Singer, N. K., Schlogl, K., Zobel, J. P., Mihovilovic, M. D., & Gonzalez, L. (2023). Singlet and triplet pathways determine the thermal Z/E isomerization of an arylazopyrazole-based photoswitch. The Journal of Physical Chemistry Letters, 14, 8956–8961. https://doi.org/10.1021/acs.jpclett.3c01785

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reimann, M., Teichmann, E., Hecht, S., & Kaupp, M. (2022). Solving the azobenzene entropy puzzle: Direct evidence for multi-state reactivity. Journal of Physical Chemistry Letters, 13, 10882–10888. https://doi.org/10.1021/acs.jpclett.2c02838

Article  CAS  PubMed  Google Scholar 

Axelrod, S., Shakhnovich, E., & Gomez-Bombarelli, R. (2022). Thermal half-lives of azobenzene derivatives: virtual screening based on intersystem crossing using a machine learning potential. arXiv 2022, arXiv:2207.11592v2 [physics.chem-ph]. https://arxiv.org/abs/2207.11592

Nekipelova, T. D., Khodot, E. N., Klimovich (Lygo), O. N., Kurkovskaya, L. N., Levina, I. I., & Kuzmin, V. A. (2016). Novel hetarylazo dyes containing tetrazole and hydroquinoline moieties: Spectral characteristics, solvatochromism and photochemistry. Photochemical & Photobiological Sciences, 15, 1558–1566. https://doi.org/10.1039/C6PP00251J

Article  CAS  Google Scholar 

Nekipelova, T. D., Khodot, E. N., Deeva, Y. S., Levina, I. I., Timokhina, E. N., Kostyukov, et al. (2021). Dihydroquinolylazotetrazole dyes: Effect of a substituent at the tetrazole fragment on spectral properties and thermal Z–E isomerization in organic solvents. Dyes and Pigments, 195, 109675. https://doi.org/10.1016/j.dyepig.2021.109675

Article  CAS 

留言 (0)

沒有登入
gif