Fungal Cultivars of Higher Attine Ants Promote Escovopsis Chemotropism

Braga RM, Dourado MN, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2016) Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 47:86–98. https://doi.org/10.1016/j.bjm.2016.10.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scherlach K, Hertweck C (2017) Mediators of mutualistic microbe-microbe interactions. Nat Prod Rep 35:303–308. https://doi.org/10.1039/C7NP00035A

Article  Google Scholar 

Chet I, Mitchell R (1976) Ecological aspects of microbial chemotactic behavior. Ann Rev Microbiol 30:221–239. https://doi.org/10.1146/annurev.mi.30.100176.001253

Article  CAS  Google Scholar 

Raina J, Fernandez V, Lambert B, Stocker R, Seymour JR (2019) The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 17:284–294. https://doi.org/10.1038/s41579-019-0182-9

Article  CAS  PubMed  Google Scholar 

Gadkar V, David-Schwartz R, Kinik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499. https://doi.org/10.1104/pp.010783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmieri D, Vitale S, Lima G, Di Pietro A, Turrà D (2020) A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat Commun 11:5264. https://doi.org/10.1038/s41467-020-18994-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–524. https://doi.org/10.1038/nature15516

Article  CAS  PubMed  Google Scholar 

Brand A, Gow NAR (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12:350–357. https://doi.org/10.1016/j.mib.2009.05.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turrà D, Di Pietro A (2015) Chemotropic sensing in fungus–plant interactions. Curr Opin Plant Biol 26:135–140. https://doi.org/10.1016/j.pbi.2015.07.004

Article  CAS  PubMed  Google Scholar 

Braunsdorf C, Mailänder-Sánchez D, Schaller M (2016) Fungal sensing of host environment. Cell Microbiol 18:1188–1200. https://doi.org/10.1111/cmi.12610

Article  CAS  PubMed  Google Scholar 

Fomina M, Ritz K, Gadd GM (2000) Negative fungal chemotropism to toxic metals. FEMS Microbiol Lett 193:207–211. https://doi.org/10.1111/j.1574-6968.2000.tb09425.x

Article  CAS  PubMed  Google Scholar 

Demain AL, Fang A (2001) The natural functions of secondary metabolites. In: Scheper T, Ulber R (eds) Advances of biochemical engineering/biotechnology, vol 69. Springer, Berlin

Google Scholar 

Boruta T (2018) Uncovering the repertoire of fungal secondary metabolites: from Fleming’s laboratory to the International Space Station. Bioengineered 9:12–16. https://doi.org/10.3389/fpls.2021.79033

Article  CAS  PubMed  Google Scholar 

Demain AL (1986) Regulation of secondary metabolism in fungi. Pure Appl Chem 58:219–226. https://doi.org/10.1351/pac198658020219

Article  CAS  Google Scholar 

Tsujiyama S, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mtcoscience 46:268–271. https://doi.org/10.1007/s10267-005-0243-y

Article  CAS  Google Scholar 

Alam B, Li J, Ge Q, Khan MA, Göng J et al (2021) Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Front Plant Sci 12:791033. https://doi.org/10.3389/fpls.2021.79033

Article  PubMed  PubMed Central  Google Scholar 

Weber NA (1972) The fungus-culturing behavior of ants. Ameri Zool 12:577–587

Article  Google Scholar 

Batey SFD, Greco C, Hutchings MI, Wilkinson B (2020) Chemical warfare between fungus-growing ants and their pathogens. Curr Opin Chem Biol 59:172–181. https://doi.org/10.1016/j.cbpa.2020.08.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002. https://doi.org/10.1073/pnas.96.14.7998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiménez-Gómez I, Barcoto MO, Montoya QV, Goes AC, Monteiro LSVE, Bueno OC, Rodrigues A (2021) Host susceptibility modulates Escovopsis pathogenic potential in the fungiculture of higher Attine ants. Front Microbiol 12:673444. https://doi.org/10.3389/fmicb.2021.673444

Article  PubMed  PubMed Central  Google Scholar 

Mendonça DMF, Caixeta MCS, Martins GL, Moreira CC, Kloss TG, Elliot SL (2021) Low virulence of the fungi Escovopsis and Escovopsioides to a leaf-cutting ant-fungus symbiosis. Front Microbiol 12:673445. https://doi.org/10.3389/fmicb.2021.673445

Article  PubMed  PubMed Central  Google Scholar 

Folgarait PJ, Marfetán JA, Cafaro MJ (2011) Growth and conidiation response of Escovopsis weberi (Ascomycota: Hypocreales) against the fungal cultivar of Acromyrmex lundii (Hymenoptera: Formicidae). Environ Entomol 40:342–349. https://doi.org/10.1603/EN10111

Article  Google Scholar 

Masiulionis VE, Pagnocca FC (2020) In vitro study of volatile organic compounds produced by the mutualistic fungus of leaf-cutter ants and the antagonist Escovopsis. Fungal Ecol 48:100986. https://doi.org/10.1016/j.funeco.2020.100986

Article  Google Scholar 

Gerardo NM, Jacobs SR, Currie CR, Mueller UG (2006) Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol 4:e235. https://doi.org/10.1371/journal.pbio.0040235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boya PC, Fernandéz-Marín H, Mejia LC, Spadafora C, Dorrestein PC, Gutierrez M (2017) Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci Rep 7:5604. https://doi.org/10.1038/s41598-017-05515-6

Article  CAS  Google Scholar 

Heine D, Holmes NA, Worsley SF, Santos ACA, Inonocent TM et al (2018) Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-04520-1

Article  CAS  Google Scholar 

Dhodary B, Schilg M, Wirth R, Spiteller DS (2018) Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chem Euro J 24:4445–4452. https://doi.org/10.1002/chem.201706071

Article  CAS  Google Scholar 

Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B Biol Sci 268:1033–1039. https://doi.org/10.1098/rspb.2001.1605

Article  CAS  Google Scholar 

Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A (2020) How do leaf-cutting ants recognize antagonistic microbes in their fungal crops? Front Ecol Evol 8:95. https://doi.org/10.3389/fevo.2020.00095

Article  Google Scholar 

Staub GM, Gloer KB, Gloer JB, Wicklow DT, Dowd PF (1993) New paspalinine derivatives with antiinsect an activity from the sclerotia of Aspergillus nomius. Tetra Lett 34:2569–2572. https://doi.org/10.1016/s0040-4039(00)77627-1

Article  CAS  Google Scholar 

Montoya QV (2023) Taxonomy and systematics of the fungus-growing ant associate Escovopsis (Hypocreaceae). Stud Mycol 106:349–397. https://doi.org/10.3114/sim.2023.106.06

Pagnocca FC, Silva OA, Hebling-Beraldo MJ, Bueno OC, Fernandes JB, Vieira PC (1990) Toxicity of sesame extracts to the symbiotic fungus of leaf-cutting ants. Bull Entomol Res 80:349–352. https://doi.org/10.1017/s0007485300050550

Article  Google Scholar 

Silva-Pinhati AOC, Bacci M Jr, Siqueira CG, Silva A, Pagnocca FC, Bueno OC, Hebling MAJ (2005) Isolation and maintenance of symbiotic fungi of ants in the tribe Attini (Hymenopera: Formicidae). Neotro Entomol 34:1–5. https://doi.org/10.1590/s1519-566X2005000100001

Article  Google Scholar 

Abràmoff MD, Magalhães PK, Ram SJ (2004) Image processing with ImageJ. Biopho Intern 11:36–42

Google Scholar 

Noguchi K, Edgar B, Yulia RG, Konietschke F (2012) nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Soft 50:12

Article  Google Scholar 

R Core Team (2016) R: a language and environment for statistical computing. R Found Stat Comp, Austria

Google Scholar 

Karaman I, Sahin F, Güllüce M, Ögütçü H, Sengül M, Adigüzel A (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus. J Ethnophar 85:231–235

Article  CAS  Google Scholar 

Ostrotsky AE, Mizumoto KM, Lima LEM, Kaneko MT, Suzana O, Nishikawa OS, Freitas RB (2008) Métodos para avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais. Rev Bras Farma 18:301–307. https://doi.org/10.1590/S0102-695X2008000200026

Article  Google Scholar 

Mody JO, Adebiyi AO, Adeniyi BA (2004) Do Aloe vera and Ageratum conyzoides enhance the anti-microbial activity of traditional medicinal soft soaps (Osedudu)? J Ethnophar 92:57–60. https://doi.org/10.1016/j.jep.2004.01.018

Article  CAS 

留言 (0)

沒有登入
gif