GehB Inactivates Lipoproteins to Delay the Healing of Acute Wounds Infected with Staphylococcus aureus

Wong SY, Manikam R, Muniandy S (2015) Prevalence and antibiotic susceptibility of bacteria from acute and chronic wounds in Malaysian subjects. J Infect Dev Ctries 9:936–944. https://doi.org/10.3855/jidc.5882

Article  CAS  PubMed  Google Scholar 

Chaby G, Senet P, Vaneau M, Martel P, Guillaume JC, Meaume S, Téot L, Debure C, Dompmartin A, Bachelet H, Carsin H, Matz V, Richard JL, Rochet JM, Sales-Aussias N, Zagnoli A, Denis C, Guillot B, Chosidow O (2007) Dressings for acute and chronic wounds: a systematic review. Arch Dermatol 143:1297–1304. https://doi.org/10.1001/archderm.143.10.1297

Article  PubMed  Google Scholar 

Parlet CP, Brown MM, Horswill AR (2019) Commensal staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol 27:497–507. https://doi.org/10.1016/j.tim.2019.01.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chambers ES, Vukmanovic-Stejic M (2020) Skin barrier immunity and ageing. Immunology 160:116–125. https://doi.org/10.1111/imm.13152

Article  CAS  PubMed  Google Scholar 

Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762. https://doi.org/10.1016/S1473-3099(05)70295-4

Article  PubMed  Google Scholar 

Kwiatkowski P, Masiuk H, Pruss A, Łopusiewicz Ł, Sienkiewicz M, Wojciechowska-Koszko I, Roszkowska P, Bania J, Guenther S, Dołęgowska B (2022) Clonal Diversity, antimicrobial susceptibility and presence of genes encoding virulence factors in Staphylococcus aureus strains isolated from cut wound infections. Curr Microbiol 79:144. https://doi.org/10.1007/s00284-022-02835-3

Article  CAS  PubMed  Google Scholar 

Zheng X, Marsman G, Lacey KA, Chapman JR, Goosmann C, Ueberheide BM, Torres VJ (2021) The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nat Commun 12:6193. https://doi.org/10.1038/s41467-021-26517-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodille E, Rose W, Diep BA, Goutelle S, Lina G, Dumitrescu O (2017) The role of antibiotics in modulating virulence in Staphylococcus aureus. Clin Microbiol Rev 30:887–917. https://doi.org/10.1128/CMR.00120-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tam K, Torres VJ (2019) Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr 7:10. https://doi.org/10.1128/microbiolspec.GPP3-0039-2018

Article  Google Scholar 

Cadieux B, Vijayakumaran V, Bernards MA, McGavin MJ, Heinrichs DE (2014) Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids. J Bacteriol 196:4044–4056. https://doi.org/10.1128/JB.02044-14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simons JW, Adams H, Cox RC, Dekker N, Götz F, Slotboom AJ, Verheij HM (1996) The lipase from Staphylococcus aureus: Expression in Escherichia coli, large-scale purification and comparison of substrate specificity to Staphylococcus hyicus lipase. Eur J Biochem 242:760–769. https://doi.org/10.1111/j.1432-1033.1996.0760r.x

Article  CAS  PubMed  Google Scholar 

Goncheva MI, Conceicao C, Tuffs SW, Lee HM, Quigg-Nicol M, Bennet I, Sargison F, Pickering AC, Hussain S, Gill AC, Dutia BM, Digard P, Fitzgerald JR (2020) Staphylococcus aureus lipase 1 enhances influenza A virus replication. MBio 11:e00975-e1020. https://doi.org/10.1128/mBio.00975-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikoleit K, Rosenstein R, Verheij HM, Gotz F (1995) Comparative biochemical and molecular analysis of the Staphylococcus hyicus, Staphylococcus aureus and a hybrid lipase Indication for a C-terminal phospholipase domain. Eur J Biochem 228:732–738. https://doi.org/10.1111/j.1432-1033.1995.0732m.x

Article  CAS  PubMed  Google Scholar 

Nguyen MT, Hanzelmann D, Hartner T, Peschel A, Gotz F (2016) Skin-specific unsaturated fatty acids boost the Staphylococcus aureus innate immune response. Infect Immun 84:205–215. https://doi.org/10.1128/IAI.00822-15

Article  CAS  PubMed  Google Scholar 

Mohammad M, Na M, Hu Z, Nguyen MT, Kopparapu PK, Jarneborn A, Karlsson A, Ali A, Pullerits R, Götz F, Jin T (2021) Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing. Communications biology 4:432. https://doi.org/10.1038/s42003-021-01947-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen MT, Kraft B, Yu W, Demircioglu DD, Hertlein T, Burian M, Schmaler M, Boller K, Bekeredjian-Ding I, Ohlsen K, Schittek B, Götz F (2015) The νSaα specific lipoprotein like cluster (lpl) of S. aureus USA300 contributes to immune stimulation and invasion in human cells. PLoS Pathog 11:e1004984. https://doi.org/10.1371/journal.ppat.1004984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tribelli PM, Luqman A, Nguyen MT, Madlung J, Fan SH, Macek B, Sass P, Bitschar K, Schittek B, Kretschmer D, Götz F (2020) Staphylococcus aureus Lpl protein triggers human host cell invasion via activation of Hsp90 receptor. Cell Microbiol 22:e13111. https://doi.org/10.1111/cmi.13111

Article  CAS  PubMed  Google Scholar 

Nguyen MT, Gotz F (2016) Lipoproteins of gram-positive bacteria: key players in the immune response and virulence. Microbiol Mol Biol Rev 80:891–903. https://doi.org/10.1128/MMBR.00028-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen MT, Uebele J, Kumari N, Nakayama H, Peter L, Ticha O, Woischnig AK, Schmaler M, Khanna N, Dohmae N, Lee BL, Bekeredjian-Ding I, Götz F (2017) Lipid moieties on lipoproteins of commensal and non-commensal staphylococci induce differential immune responses. Nat Commun 8:2246. https://doi.org/10.1038/s41467-017-02234-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanzelmann D, Joo HS, Franz-Wachtel M, Hertlein T, Stevanovic S, Macek B, Wolz C, Gotz F, Otto M, Kretschmer D, Peschel A (2016) Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun 7:12304. https://doi.org/10.1038/ncomms12304

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammad M, Ali A, Nguyen MT, Gotz F, Pullerits R, Jin T (2022) Staphylococcus aureus lipoproteins in infectious diseases. Front Microbiol 13:1006765. https://doi.org/10.3389/fmicb.2022.1006765

Article  PubMed  PubMed Central  Google Scholar 

Mohammad M, Nguyen MT, Engdahl C, Na M, Jarneborn A, Hu Z, Karlsson A, Pullerits R, Ali A, Götz F, Jin T (2019) The YIN and YANG of lipoproteins in developing and preventing infectious arthritis by Staphylococcus aureus. PLoS Pathog 15:e1007877. https://doi.org/10.1371/journal.ppat.1007877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang W, Rao Y, Zheng Y, Yang Y, Hu Q, Hu Z, Yuan J, Peng H, Xiong K, Tan L, Li S, Zhu J, Li M, Hu X, Mao X, Rao X (2019) β-Lactam antibiotics enhance the pathogenicity of methicillin-resistant Staphylococcus aureus via SarA-controlled lipoprotein-like cluster expression. MBio 10:e00880-e919. https://doi.org/10.1128/mBio.00880-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Alonzo F 3rd (2019) Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proc Natl Acad Sci U S A 116:3764–3773. https://doi.org/10.1073/pnas.1817248116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan J, Yang J, Hu Z, Yang Y, Shang W, Hu Q, Zheng Y, Peng H, Zhang X, Cai X, Zhu J, Li M, Hu X, Zhou R, Rao X (2018) Safe staphylococcal platform for the development of multivalent nanoscale vesicles against viral infections. Nano Lett 18:725–733. https://doi.org/10.1021/acs.nanolett.7b03893

Article  CAS  PubMed  Google Scholar 

Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739. https://doi.org/10.1016/S0140-6736(06)68231-7

Article  CAS  PubMed  Google Scholar 

Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79. https://doi.org/10.3389/fimmu.2012.00079

Article  PubMed  PubMed Central  Google Scholar 

Reyes-Robles T, Alonzo F, Kozhaya L, Lacy DB, Unutmaz D, Torres VJ (2013) Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14:453–459. Doi:https://doi.org/10.1016/j.chom.2013.09.005

Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL (2015) Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347:67–71. https://doi.org/10.1126/science.1260972

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sganga G, Pea F, Aloj D, Corcione S, Pierangeli M, Stefani S, Rossolini GM, Menichetti F (2020) Acute wound infections management: the “Don’ts” from a multidisciplinary expert panel. Expert Rev Anti Infect Ther 18:231–240. https://doi.org/10.1080/14787210.2020.1726740

Article  CAS  PubMed  Google Scholar 

Li S, Renick P, Senkowsky J, Nair A, Tang L (2021) Diagnostics for wound infections. Adv Wound Care (New Rochelle) 10:317–327.

留言 (0)

沒有登入
gif