Staff NP, Grisold A, Grisold W, Windebank AJ (2017) Chemotherapy-induced peripheral neuropathy: a current review: CIPN. Ann Neurol 81:772–781. https://doi.org/10.1002/ana.24951
Article CAS PubMed PubMed Central Google Scholar
Seretny M, Currie GL, Sena ES et al (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155:2461–2470. https://doi.org/10.1016/j.pain.2014.09.020
Grossmann L, Gorodetskaya N, Baron R, Jänig W (2009) Enhancement of ectopic discharge in regenerating A- and C-fibers by inflammatory mediators. J Neurophysiol 101:2762–2774. https://doi.org/10.1152/jn.91091.2008
Andersson J (2005) The inflammatory reflex–introduction. J Intern Med 257:122–125. https://doi.org/10.1111/j.1365-2796.2004.01440.x
Article CAS PubMed Google Scholar
Johnston GR, Webster NR (2009) Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth 102:453–462. https://doi.org/10.1093/bja/aep037
Article CAS PubMed Google Scholar
Zhou Y, Zuo X, Li Y et al (2012) Nicotine inhibits tumor necrosis factor-α induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int 32:97–104. https://doi.org/10.1007/s00296-010-1549-4
Article CAS PubMed Google Scholar
Meregnani J, Clarençon D, Vivier M et al (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 160:82–89. https://doi.org/10.1016/j.autneu.2010.10.007
Article CAS PubMed Google Scholar
Kyte SL, Toma W, Bagdas D et al (2018) Nicotine prevents and reverses paclitaxel-induced mechanical allodynia in a mouse model of CIPN. J Pharmacol Exp Ther 364:110–119. https://doi.org/10.1124/jpet.117.243972
Article CAS PubMed PubMed Central Google Scholar
De Couck M, Nijs J, Gidron Y (2014) You may need a nerve to treat pain: the neurobiological rationale for vagal nerve activation in pain management. Clin J Pain 30:1099–1105. https://doi.org/10.1097/AJP.0000000000000071
Lange G, Janal MN, Maniker A et al (2011) Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med 12:1406–1413. https://doi.org/10.1111/j.1526-4637.2011.01203.x
Martelletti P, Barbanti P, Grazzi L et al (2018) Consistent effects of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: additional findings from the randomized, sham-controlled, double-blind PRESTO trial. J Headache Pain 19:101. https://doi.org/10.1186/s10194-018-0929-0
Article CAS PubMed PubMed Central Google Scholar
Tassorelli C, Grazzi L, de Tommaso M et al (2018) Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study. Neurology 91:e364–e373. https://doi.org/10.1212/WNL.0000000000005857
Article PubMed PubMed Central Google Scholar
Goadsby PJ, de Coo IF, Silver N et al (2018) Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia 38:959–969. https://doi.org/10.1177/0333102417744362
Busch V, Zeman F, Heckel A et al (2013) The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul 6:202–209. https://doi.org/10.1016/j.brs.2012.04.006
Janner H, Klausenitz C, Gürtler N et al (2018) effects of electrical transcutaneous vagus nerve stimulation on the perceived intensity of repetitive painful heat stimuli: a blinded placebo- and sham-controlled randomized crossover investigation. Anesth Analg 126:2085–2092. https://doi.org/10.1213/ANE.0000000000002820
Zhang R, Gan Y, Li J, Feng Y (2020) Vagus nerve stimulation transiently mitigates chemotherapy-induced peripheral neuropathy in rats. J Pain Res 13:3457–3465. https://doi.org/10.2147/JPR.S281190
Article CAS PubMed PubMed Central Google Scholar
Fang J, Rong P, Hong Y et al (2016) Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry 79:266–273. https://doi.org/10.1016/j.biopsych.2015.03.025
von Wrede R, Surges R (2021) Transcutaneous vagus nerve stimulation in the treatment of drug-resistant epilepsy. Auton Neurosci 235:102840. https://doi.org/10.1016/j.autneu.2021.102840
Loprinzi CL, Lacchetti C, Bleeker J et al (2020) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol 38:3325–3348. https://doi.org/10.1200/JCO.20.01399
Zhang Y, Huang Y, Li H et al (2021) Transcutaneous auricular vagus nerve stimulation (taVNS) for migraine: an fMRI study. Reg Anesth Pain Med 46:145–150. https://doi.org/10.1136/rapm-2020-102088
Bretherton B, Atkinson L, Murray A et al (2019) Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging (Albany NY) 11:4836–4857. https://doi.org/10.18632/aging.102074
Luo M, Qu X, Li S et al (2017) Transcutaneous vagus nerve stimulation for primary insomnia and affective disorder:a report of 35 cases. Zhongguo Zhen Jiu 37:269–273. https://doi.org/10.13703/j.0255-2930.2017.03.013
Zhao B, Li L, Jiao Y et al (2019) Transcutaneous auricular vagus nerve stimulation in treating post-stroke insomnia monitored by resting-state fMRI: the first case report. Brain Stimul 12:824–826. https://doi.org/10.1016/j.brs.2019.02.016
Lomarev M, Denslow S, Nahas Z et al (2002) Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. J Psychiatr Res 36:219–227. https://doi.org/10.1016/s0022-3956(02)00013-4
Mu Q, Bohning DE, Nahas Z et al (2004) Acute vagus nerve stimulation using different pulse widths produces varying brain effects. Biol Psychiatry 55:816–825. https://doi.org/10.1016/j.biopsych.2003.12.004
Conway CR, Sheline YI, Chibnall JT et al (2006) Cerebral blood flow changes during vagus nerve stimulation for depression. Psychiatry Res 146:179–184. https://doi.org/10.1016/j.pscychresns.2005.12.007
Conway CR, Sheline YI, Chibnall JT et al (2012) Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disorder. Brain Stimul 5:163–171. https://doi.org/10.1016/j.brs.2011.03.001
Rosas-Ballina M, Olofsson PS, Ochani M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101. https://doi.org/10.1126/science.1209985
Article CAS PubMed PubMed Central Google Scholar
Butt MF, Albusoda A, Farmer AD, Aziz Q (2020) The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 236:588–611. https://doi.org/10.1111/joa.13122
Evans MS, Verma-Ahuja S, Naritoku DK, Espinosa JA (2004) Intraoperative human vagus nerve compound action potentials. Acta Neurol Scand 110:232–238. https://doi.org/10.1111/j.1600-0404.2004.00309.x
Article CAS PubMed Google Scholar
Ap M, Dq T, Dk A et al (2018) High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation. Neuromodulation 21. https://doi.org/10.1111/ner.12706
Safi S, Ellrich J, Neuhuber W (2016) Myelinated axons in the auricular branch of the human vagus nerve. Anat Rec (Hoboken) 299:1184–1191. https://doi.org/10.1002/ar.23391
Stefan H, Kreiselmeyer G, Kerling F et al (2012) Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53:e115-118. https://doi.org/10.1111/j.1528-1167.2012.03492.x
Yap JYY, Keatch C, Lambert E et al (2020) Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci 14:284. https://doi.org/10.3389/fnins.2020.00284
Article PubMed PubMed Central Google Scholar
De Grandis D (2007) Acetyl-L-carnitine for the treatment of chemotherapy-induced peripheral neuropathy: a short review. CNS Drugs 21 Suppl 1:39–43; discussion 45–46. https://doi.org/10.2165/00023210-200721001-00006
Hershman DL, Unger JM, Crew KD et al (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol 31:2627–2633. https://doi.org/10.1200/JCO.2012.44.8738
Comments (0)