Performance of brushite plaster as kidney stone phantoms for laser lithotripsy

Liu Y, Zhong P (2002) BegoStone—a new stone phantom for shock wave lithotripsy research (L). J Acoust Soc Am 112:1265–1268. https://doi.org/10.1121/1.1501905

Article  CAS  PubMed  Google Scholar 

Esch E, Simmons WN, Sankin G et al (2010) A simple method for fabricating artificial kidney stones of different physical properties. Urol Res 38:315–319. https://doi.org/10.1007/s00240-010-0298-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heimbach D, Munver R, Zhong P et al (2000) Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones. J Urol 164:537–544. https://doi.org/10.1016/S0022-5347(05)67419-8

Article  CAS  PubMed  Google Scholar 

Charles Chuong CJ, Zhong P, Preminger GM (1992) A comparison of stone damage caused by different modes of shock wave generation. J Urol 148:200–205. https://doi.org/10.1016/S0022-5347(17)36553-9

Article  Google Scholar 

Rassweiler J, Irion U, Strauss R et al (1989) Technical considerations using a pulsed Neodym-YAG laser for endoscopic shock wave lithotripsy. Eur Urol 16:374–377. https://doi.org/10.1159/000471620

Article  CAS  PubMed  Google Scholar 

Frank DS, Aldoukhi AH, Roberts WW et al (2019) Polymer-mineral composites mimic human kidney stones in laser lithotripsy experiments. ACS Biomater Sci Eng 5:4970–4975. https://doi.org/10.1021/acsbiomaterials.9b01130

Article  CAS  PubMed  Google Scholar 

Shalini S, Frank DS, Aldoukhi AH et al (2020) Assessing the role of light absorption in laser lithotripsy by isotopic substitution of kidney stone materials. ACS Biomater Sci Eng 6:5274–5280. https://doi.org/10.1021/acsbiomaterials.0c00790

Article  CAS  PubMed  Google Scholar 

Robinson JW, Ghani KR, Roberts WW, Matzger AJ (2023) Near-infrared absorption coefficients in kidney stone minerals and their relation to crystal structure. J Phys Chem C 127:759–767. https://doi.org/10.1021/acs.jpcc.2c07475

Article  CAS  Google Scholar 

King JB, Katta N, Teichman JMH et al (2021) Mechanisms of pulse modulated Holmium:YAG lithotripsy. J Endourol 35:S-29. https://doi.org/10.1089/end.2021.0742

Article  Google Scholar 

Vassar GJ, Chan KF, Teichman JMH et al (1999) Holmium: YAG lithotripsy: photothermal mechanism. J Endourol 13:181–190. https://doi.org/10.1089/end.1999.13.181

Article  CAS  PubMed  Google Scholar 

Chan KF, Vassar GJ, Pfefer TJ et al (1999) Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med 25:22–37. https://doi.org/10.1002/(SICI)1096-9101(1999)25:1%3c22::AID-LSM4%3e3.0.CO;2-6

Article  CAS  PubMed  Google Scholar 

Taratkin M, Laukhtina E, Singla N et al (2021) How lasers ablate stones. in vitro study of laser lithotripsy (Ho:YAG and Tm-Fiber lasers) in different environments. J Endourol 35:931–936. https://doi.org/10.1089/end.2019.0441

Article  PubMed  Google Scholar 

Wong DG, Shiang A, Ostergar A, Sands KG (2023) Enhanced popcorning using polyanionic chelating solutions as irrigation. Urolithiasis 51:90. https://doi.org/10.1007/s00240-023-01464-0

Article  CAS  PubMed  Google Scholar 

Hecht SL, Wolf JS (2013) Techniques for holmium laser lithotripsy of intrarenal calculi. Urology 81:442–445. https://doi.org/10.1016/j.urology.2012.11.021

Article  PubMed  Google Scholar 

Aldoukhi AH, Roberts WW, Hall TL, Ghani KR (2019) Watch your distance: the role of laser fiber working distance on fragmentation when altering pulse width or modulation. J Endourol 33:120–126. https://doi.org/10.1089/end.2018.0572

Article  PubMed  Google Scholar 

Bader MJ, Pongratz T, Khoder W et al (2015) Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World J Urol 33:471–477. https://doi.org/10.1007/s00345-014-1429-8

Article  PubMed  Google Scholar 

Lilley KJ, Gbureck U, Wright AJ et al (2005) Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio. J Mater Sci Mater Med 16:1185–1190. https://doi.org/10.1007/s10856-005-4727-2

Article  CAS  PubMed  Google Scholar 

Ishikawa K (2010) Bone substitute fabrication based on dissolution-precipitation reactions. Materials 3:1138–1155. https://doi.org/10.3390/ma3021138

Article  CAS  PubMed Central  Google Scholar 

Bai H, Walsh F, Gludovatz B et al (2016) Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv Mater 28:50–56. https://doi.org/10.1002/adma.201504313

Article  CAS  PubMed  Google Scholar 

Zhang J, Liu W, Schnitzler V et al (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10:1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001

Article  CAS  PubMed  Google Scholar 

Alkhraisat MH, Mariño FT, Rodríguez CR et al (2008) Combined effect of strontium and pyrophosphate on the properties of brushite cements. Acta Biomater 4:664–670. https://doi.org/10.1016/j.actbio.2007.12.001

Article  CAS  PubMed  Google Scholar 

Tamimi F, Sheikh Z, Barralet J (2012) Dicalcium phosphate cements: brushite and monetite. Acta Biomater 8:474–487. https://doi.org/10.1016/j.actbio.2011.08.005

Article  CAS  PubMed  Google Scholar 

Xu HH, Wang P, Wang L et al (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:1–19. https://doi.org/10.1038/boneres.2017.56

Article  CAS  Google Scholar 

Bohner M, Lemaitre J, Ring TA (1996) Effects of sulfate, pyrophosphate, and citrate ions on the physicochemical properties of cements made of β-tricalcium phosphate-phosphoric acid-water mixtures. J Am Ceram Soc 79:1427–1434. https://doi.org/10.1111/j.1151-2916.1996.tb08746.x

Article  CAS  Google Scholar 

Marom R, Roberts WW, Hall TL et al (2023) Characterization of thulium fiber laser pulses: differences between short and long pulse. J Urol 209:e360. https://doi.org/10.1097/JU.0000000000003254.19

Article  Google Scholar 

Sivaguru M, Lieske JC, Krambeck AE, Fouke BW (2020) GeoBioMed sheds new light on human kidney stone crystallization and dissolution. Nat Rev Urol 17:1–2. https://doi.org/10.1038/s41585-019-0256-5

Article  PubMed  Google Scholar 

Sivaguru M, Saw JJ, Wilson EM et al (2021) Human kidney stones: a natural record of universal biomineralization. Nat Rev Urol 18:404–432. https://doi.org/10.1038/s41585-021-00469-x

Article  CAS  PubMed  Google Scholar 

Daudon M, Bazin D, André G et al (2009) Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J Appl Crystallogr 42:109–115. https://doi.org/10.1107/S0021889808041277

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif