Degradation of xanthene-based dyes by photoactivated persulfate: experimental and computational studies

Wright, P., U. by Staff. (2014). Xanthene dyes. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley. https://doi.org/10.1002/0471238961.2401142023090708.a01.pub2

Chapter  Google Scholar 

Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2021). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 26, 3083. https://doi.org/10.3390/molecules26133813

Article  CAS  Google Scholar 

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation., 3, 275–290. https://doi.org/10.1016/j.biori.2019.09.001

Article  Google Scholar 

Moyo, S., Makhanya, B. P., & Zwane, P. E. (2022). Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon., 8, e09632. https://doi.org/10.1016/j.heliyon.2022.e09632

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, D. (1987). Effects of colorants in the aquatic environment. Ecotoxicology and Environmental Safety., 13, 139–147. https://doi.org/10.1016/0147-6513(87)90001-7

Article  CAS  PubMed  Google Scholar 

Samchetshabam, G., Hussan, A., & Choudhury, T. G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environment & Ecology., 35, 2349–2353.

Google Scholar 

Ismail, G. A., & Sakai, H. (2022). Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, 291, 132906. https://doi.org/10.1016/j.chemosphere.2021.132906

Article  CAS  PubMed  Google Scholar 

Mcyotto, F., Wei, Q., Macharia, D. K., Huang, M., Shen, C., & Chow, C. W. K. (2021). Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal., 405, 126674. https://doi.org/10.1016/j.cej.2020.126674

Article  CAS  Google Scholar 

Kapoor, R. T., Danish, M., Singh, R. S., Rafatullah, M., & Abdul, A. K. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering., 43, 102255. https://doi.org/10.1016/j.jwpe.2021.102255

Article  Google Scholar 

Ashraf, U., Chat, O. A., & Dar, A. A. (2014). An inhibitory effect of self-assembled soft systems on fenton driven degradation of xanthene dye rhodamine B. Chemosphere, 99, 199–206. https://doi.org/10.1016/j.chemosphere.2013.10.074

Article  CAS  PubMed  Google Scholar 

Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology., 77, 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

Article  CAS  PubMed  Google Scholar 

Lee, C., Kim, H. H., & Park, N. B. (2018). Chemistry of persulfates for the oxidation of organic contaminants in water. Membrane Water Treatment., 9, 405–419. https://doi.org/10.12989/mwt.2018.9.6.405

Article  Google Scholar 

Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal., 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059

Article  CAS  Google Scholar 

Ghanbari, F., & Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chemical Engineering Journal., 310, 41–62. https://doi.org/10.1016/j.cej.2016.10.064

Article  CAS  Google Scholar 

Herrmann, H. (2007). On the photolysis of simple anions and neutral molecules as sources of O-/OH, SOx- and Cl in aqueous solution. Physical Chemistry Chemical Physics., 9, 3935–3964. https://doi.org/10.1039/b618565g

Article  CAS  PubMed  Google Scholar 

Olmez-Hanci, T., & Arslan-Alaton, I. (2013). Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chemical Engineering Journal., 224, 10–16. https://doi.org/10.1016/j.cej.2012.11.007

Article  CAS  Google Scholar 

Tsitonaki, A., Petri, B., Crimi, M., Mosbk, H., Siegrist, R. L., & Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Critical Reviews in Environmental Science and Technology., 40, 55–91. https://doi.org/10.1080/10643380802039303

Article  CAS  Google Scholar 

Watts, R. J., & Teel, A. L. (2006). Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous Toxic and Radioactive Waste Management. https://doi.org/10.1061/(ASCE)1090-025X(2006)10:1(2)

Article  Google Scholar 

Han, M., Zhu, W., Hossain, M. S. A., You, J., & Kim, J. (2022). Recent progress of functional metal–organic framework materials for water treatment using sulfate radicals. Environmental Research., 211, 112956. https://doi.org/10.1016/j.envres.2022.112956

Article  CAS  PubMed  Google Scholar 

Wacławek, S., Lutze, H. V., Grübel, K., Padil, V. V. T., Černík, M., & Dionysiou, D. D. (2017). Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal., 330, 44–62. https://doi.org/10.1016/j.cej.2017.07.132

Article  CAS  Google Scholar 

Cai, T., Liu, Y., Wang, L., Dong, W., Chen, H., Zeng, W., Xia, X., & Zeng, G. (2019). Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions. Chemical Engineering Journal., 375, 122070. https://doi.org/10.1016/j.cej.2019.122070

Article  CAS  Google Scholar 

Jawad, A., Zhan, K., Wang, H., Shahzad, A., Zeng, Z., Wang, J., Zhou, X., Ullah, H., Chen, Z., & Chen, Z. (2020). Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide. Environmental Science and Technology., 54, 2476–2488. https://doi.org/10.1021/acs.est.9b04696

Article  CAS  PubMed  Google Scholar 

Hassani, A., Scaria, J., Ghanbari, F., & Nidheesh, P. V. (2023). Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. Environmental Research., 217, 114789. https://doi.org/10.1016/j.envres.2022.114789

Article  CAS  PubMed  Google Scholar 

Andrew-Lin, K. Y., & Zhang, Z. Y. (2016). α-Sulfur as a metal-free catalyst to activate peroxymonosulfate under visible light irradiation for decolorization. RSC Advances., 6, 15027–15034. https://doi.org/10.1039/c5ra22947b

Article  CAS  Google Scholar 

Qiong-Gao, Y., Yun-Gao, N., Deng, Y., Qiong-Yang, Y., & Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal., 195–196, 248–253. https://doi.org/10.1016/j.cej.2012.04.084

Article  CAS  Google Scholar 

Gao, Y. Q., Gao, N. Y., Deng, Y., Yin, D. Q., Sen-Zhang, Y., Rong, W. L., & Zhou, S. D. (2015). Heat-activated persulfate oxidation of sulfamethoxazole in water. Desalination and Water Treatment., 56, 2225–2233. https://doi.org/10.1080/19443994.2014.960471

Article  CAS  Google Scholar 

Mcheik, A. H., & El Jamal, M. M. (2013). Kinetic study of the discoloration of rhodamine B with persulfate Iron activation. Journal of the University of Chemical Technology and Metallurgy., 48, 357–365.

CAS  Google Scholar 

Da Oh, W., Dong, Z., & Lim, T. T. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Applied Catalysis B: Environmental., 194, 169–201. https://doi.org/10.1016/j.apcatb.2016.04.003

Article  CAS  Google Scholar 

Matzek, L. W., & Carter, K. E. (2016). Activated persulfate for organic chemical degradation: A review. Chemosphere, 151, 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

Article  CAS  PubMed  Google Scholar 

Cohen, H. M., & Wasserman, A. (2007). On the foundations of chemical reactivity theory. The Journal of Physical Chemistry A. https://doi.org/10.1021/jp066449h

Article  PubMed  Google Scholar 

Morell, C., Grand, A., & Toro-Labbé, A. (2005). New dual descriptor for chemical reactivity. Journal of Physical Chemistry A., 109, 205–212. https://doi.org/10.1021/jp046577a

Article  CAS  PubMed  Google Scholar 

Ma, Y., Liang, J., Zhao, D., Chen, Y. L., Shen, J., & Xiong, B. (2014). Condensed Fukui function predicts innate C–H radical functionalization sites on multi-nitrogen containing fused arenes. RSC Advances., 4, 17262–17264. https://doi.org/10.1039/c4ra01853b

Article  CAS  Google Scholar 

Chen, T., Ma, J., Zhang, Q., Xie, Z., Zeng, Y., Li, R., Liu, H., Liu, Y., Lv, W., & Liu, G. (2019). Degradation of propranolol by UV-activated persulfate oxidation: Reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation. Science of the Total Environment., 690, 878–890. https://doi.org/10.1016/j.scitotenv.2019.07.034

Article  CAS  PubMed  Google Scholar 

Gao, L., Mao, Q., Luo, S., Cao, L., Xie, X., Yang, Y., Deng, Y., & Wei, Z. (2020). Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: Similarities and differences. Environmental Pollution., 259, 113795. https://doi.org/10.1016/j.envpol.2019.113795

Article  CAS  PubMed  Google Scholar 

Luo, T., Wa, J., Ma, Y., Wangac, Y., & Wan, Y. (2019). Sulfamethoxazole degradation by an Fe(ii)-activated persulfate process: Insight into the reactive sites, product identification and degradation pathways. Environmental Science: Processes & Impacts., 21, 1560–1569.

CAS  Google Scholar 

Batistela, V. R., Pellosi, D. S., De Souza, F. D., Da Costa, W. F., De Oliveira-Santin, S. M., De Souza, V. R., Caetano, W., De Oliveira, H. P. M., Scarminio, I. S., & Hioka, N. (2011). PKa determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV–vis spectrophotometric data. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 79, 889–897. https://doi.org/10.1016/j.saa.2011.03.027

Article  CAS 

留言 (0)

沒有登入
gif