Kinetic effects in singlet oxygen mediated oxidations by immobilized photosensitizers on silica

DeRosa, M. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233–234, 351–371. https://doi.org/10.1016/S0010-8545(02)00034-6

Article  Google Scholar 

Foote, C. S., & Wexler, S. (1964). Singlet oxygen. A probable intermediate in photosensitized autoxidations. Journal of the American Chemical Society, 86, 3880–3881. https://doi.org/10.1021/ja01072a061

Article  CAS  Google Scholar 

Di Mascio, P., Martinez, G. R., Miyamoto, S., Ronsein, G. E., Medeiros, M. H. G., & Cadet, J. (2019). Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chemical Reviews, 119, 2043–2086. https://doi.org/10.1021/acs.chemrev.8b00554

Article  CAS  PubMed  Google Scholar 

Monro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G., & McFarland, S. A. (2019). Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, 119, 797–828. https://doi.org/10.1021/acs.chemrev.8b00211

Article  CAS  PubMed  Google Scholar 

Ogilby, P. R. (2010). Singlet oxygen: There is indeed something new under the sun. Chemical Society Reviews, 39, 3181. https://doi.org/10.1039/b926014p

Article  CAS  PubMed  Google Scholar 

Bogoeva, V., Siksjø, M., Sæterbø, K. G., Melø, T. B., Bjørkøy, A., Lindgren, M., & Gederaas, O. A. (2016). Ruthenium porphyrin-induced photodamage in bladder cancer cells. Photodiagnosis and Photodynamic Therapy, 14, 9–17. https://doi.org/10.1016/j.pdpdt.2016.01.012

Article  CAS  PubMed  Google Scholar 

Griffiths, J., Chu, K.-Y., & Hawkins, C. (1976). Photosensitised oxidation of 1-naphthols. Journal of the Chemical Society, Chemical Communications, 676, 1. https://doi.org/10.1039/c39760000676

Article  Google Scholar 

Takizawa, S., Aboshi, R., & Murata, S. (2011). Photooxidation of 1,5-dihydroxynaphthalene with iridium complexes as singlet oxygen sensitizers. Photochemical & Photobiological Sciences, 10, 895. https://doi.org/10.1039/c0pp00265h

Article  CAS  Google Scholar 

Ohloff, G. (1975). Singlet oxygen: A reagent in organic synthesis. In A. Bruylants, L. Ghosez, & H. G. Viehe (Eds.), Organic synthesis (pp. 481–502). Butterworth-Heinemann.

Chapter  Google Scholar 

Ravelli, D., Protti, S., Neri, P., Fagnoni, M., & Albini, A. (2011). Photochemical technologies assessed: The case of rose oxide. Green Chemistry, 13, 1876–1884. https://doi.org/10.1039/c0gc00507j

Article  CAS  Google Scholar 

Terra, J. C. S., Desgranges, A., Monnereau, C., Sanchez, E. H., De Toro, J. A., Amara, Z., & Moores, A. (2020). Photocatalysis meets magnetism: Designing magnetically recoverable supports for visible-light photocatalysis. ACS Applied Materials & Interfaces, 12, 24895–24904. https://doi.org/10.1021/acsami.0c06126

Article  CAS  Google Scholar 

Covello, P. S. (2008). Making artemisinin. Phytochemistry, 69, 2881–2885. https://doi.org/10.1016/j.phytochem.2008.10.001

Article  CAS  PubMed  Google Scholar 

Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M. D., Tai, A., Main, A., Eng, D., Polichuk, D. R., Teoh, K. H., Reed, D. W., Treynor, T., Lenihan, J., Jiang, H., Fleck, M., Bajad, S., Dang, G., … Newman, J. D. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532. https://doi.org/10.1038/nature12051

Article  CAS  PubMed  Google Scholar 

Lévesque, F., & Seeberger, P. H. (2012). Continuous-flow synthesis of the anti-malaria drug artemisinin. Angewandte Chemie International Edition, 51, 1706–1709. https://doi.org/10.1002/anie.201107446

Article  CAS  PubMed  Google Scholar 

Amara, Z., Bellamy, J. F. B., Horvath, R., Miller, S. J., Beeby, A., Burgard, A., Rossen, K., Poliakoff, M., & George, M. W. (2015). Applying green chemistry to the photochemical route to artemisinin. Nature Chem, 7, 489–495. https://doi.org/10.1038/nchem.2261

Article  CAS  Google Scholar 

Kopetzki, D., Lévesque, F., & Seeberger, P. H. (2013). A continuous-flow process for the synthesis of artemisinin. Chemistry—A European Journal, 19, 5450–5456. https://doi.org/10.1002/chem.201204558

Article  CAS  PubMed  Google Scholar 

Montagnon, T., Tofi, M., & Vassilikogiannakis, G. (2008). Using singlet oxygen to synthesize polyoxygenated natural products from furans. Accounts of Chemical Research, 41, 1001–1011. https://doi.org/10.1021/ar800023v

Article  CAS  PubMed  Google Scholar 

Ghogare, A. A., & Greer, A. (2016). Using singlet oxygen to synthesize natural products and drugs. Chemical Reviews, 116, 9994–10034. https://doi.org/10.1021/acs.chemrev.5b00726

Article  CAS  PubMed  Google Scholar 

Richard, J.-A. (2009). Singlet oxygen. Synlett, 2009, 1187–1188. https://doi.org/10.1055/s-0028-1088111

Article  CAS  Google Scholar 

Al-Nu’airat, J., Oluwoye, I., Zeinali, N., Altarawneh, M., & Dlugogorski, B. Z. (2021). Review of chemical reactivity of singlet oxygen with organic fuels and contaminants. Chemical Record, 21, 315–342. https://doi.org/10.1002/tcr.202000143

Article  CAS  PubMed  Google Scholar 

Pibiri, I., Buscemi, S., Palumbo Piccionello, A., & Pace, A. (2018). Photochemically produced singlet oxygen: Applications and perspectives. ChemPhotoChem, 2, 535–547. https://doi.org/10.1002/cptc.201800076

Article  CAS  Google Scholar 

Schmidt, R. (2006). Photosensitized generation of singlet oxygen. Photochemistry and Photobiology, 82, 1161–1177. https://doi.org/10.1562/2006-03-03-lR-833

Article  CAS  PubMed  Google Scholar 

Mehraban, N., & Freeman, H. S. (2015). Developments in PDT sensitizers for increased selectivity and singlet oxygen production. Materials, 8, 4421–4456. https://doi.org/10.3390/ma8074421

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez-Arroyo, A. J., Palao, E., Agarrabeitia, A. R., Ortiz, M. J., & García-Fresnadillo, D. (2016). Towards improved halogenated BODIPY photosensitizers: Clues on structural designs and heavy atom substitution patterns. Physical Chemistry Chemical Physics: PCCP, 19, 69–72. https://doi.org/10.1039/C6CP06448E

Article  CAS  PubMed  Google Scholar 

Gorman, A., Killoran, J., O’Shea, C., Kenna, T., Gallagher, W. M., & O’Shea, D. F. (2004). In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society, 126, 10619–10631. https://doi.org/10.1021/ja047649e

Article  CAS  PubMed  Google Scholar 

Mettra, B., Liao, Y. Y., Gallavardin, T., Armagnat, C., Pitrat, D., Baldeck, P., Bahers, T. L., Monnereau, C., & Andraud, C. (2018). A combined theoretical and experimental investigation on the influence of the bromine substitution pattern on the photophysics of conjugated organic chromophores. Physical Chemistry Chemical Physics: PCCP, 20, 3768–3783. https://doi.org/10.1039/C7CP06535C

Article  CAS  PubMed  Google Scholar 

Ashen-Garry, D., & Selke, M. (2014). Singlet oxygen generation by cyclometalated complexes and applications. Photochemistry and Photobiology, 90, 257–274. https://doi.org/10.1111/php.12211

Article  CAS  PubMed  Google Scholar 

Arnbjerg, J., Paterson, M. J., Nielsen, C. B., Jørgensen, M., Christiansen, O., & Ogilby, P. R. (2007). One- and two-photon photosensitized singlet oxygen production: Characterization of aromatic ketones as sensitizer standards. Journal of Physical Chemistry A, 111, 5756–5767. https://doi.org/10.1021/jp071197l

Article  CAS  PubMed  Google Scholar 

Westberg, M., Bregnhøj, M., Etzerodt, M., & Ogilby, P. R. (2017). No photon wasted: An efficient and selective singlet oxygen photosensitizing protein. The Journal of Physical Chemistry B, 121, 9366–9371. https://doi.org/10.1021/acs.jpcb.7b07831

Article  CAS  PubMed  Google Scholar 

Oliveros, E., Suardi-Murasecco, P., Aminian-Saghafi, T., Braun, A. M., & Hansen, H.-J. (1991). 1H-phenalen-1-one: Photophysical properties and singlet-oxygen production. Helvetica Chimica Acta, 74, 79–90. https://doi.org/10.1002/hlca.19910740110

Article  CAS  Google Scholar 

Galán, L. A., Castán, J. M. A., Dalinot, C., Marqués, P. S., Blanchard, P., Maury, O., Cabanetos, C., Bahers, T. L., & Monnereau, C. (2020). Theoretical and experimental investigation on the intersystem crossing kinetics in benzothioxanthene imide luminophores, and their dependence on substituent effects. Physical Chemistry Chemical Physics: PCCP, 22, 12373–12381. https://doi.org/10.1039/D0CP01072C

Article  PubMed  Google Scholar 

Zhang, X., Wang, Z., Hou, Y., Yan, Y., Zhao, J., & Dick, B. (2021). Recent development of heavy-atom-free triplet photosensitizers: Molecular structure design, photophysics and application. J Mater Chem C, 9, 11944–11973. https://doi.org/10.1039/D1TC02535J

Article  CAS  Google Scholar 

Yan, Y., Sukhanov, A. A., Bousquet, M. H. E., Guan, Q., Zhao, J., Voronkova, V. K., Escudero, D., Barbon, A., Xing, Y., Gurzadyan, G. G., & Jacquemin, D. (2021). Does twisted π-conjugation framework always induce efficient intersystem crossing? A case study with benzo[b]- and [a]phenanthrene-fused BODIPY derivatives and identification of a dark state. The Journal of Physical Chemistry B, 125, 6280–6295. https://doi.org/10.1021/acs.jpcb.1c03189

Article  CAS  PubMed  Google Scholar 

Zhao, J., Chen, K., Hou, Y., Che, Y., Liu, L., & Jia, D. (2018). Recent progress in heavy atom-free organic compounds showing unexpected intersystem crossing (ISC) ability. Organic & Biomolecular Chemistry, 16, 3692–3701. https://doi.org/10.1039/C8OB00421H

Article  CAS 

留言 (0)

沒有登入
gif