Primary processes in photophysics and photochemistry of a potential light-activated anti-cancer dirhodium complex

Rosenberg, B., Vancamp, L., Trosko, J. E., & Mansour, V. H. (1969). Platinum compounds: A new class of potent antitumour agents. Nature, 222, 385–386. https://doi.org/10.1038/222385a0

Article  CAS  PubMed  Google Scholar 

Medici, S., Peana, M., Nurchi, V. M., Lachowicz, J. A., Crisponi, G., & Zoroddu, M. A. (2015). Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, 284, 329–350. https://doi.org/10.1016/j.ccr.2014.08.002

Article  CAS  Google Scholar 

Zhang, Ch., Xu, Ch., Gao, X., & Yao, Q. (2022). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 12(5), 2115–2132. https://doi.org/10.7150/thno.69424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonnet, S. (2018). Why developing PhotoActivated chemotherapy? Dalton Transactions, 47(31), 10330–10343. https://doi.org/10.1039/C8DT01585F

Article  CAS  PubMed  Google Scholar 

Brown, S. B., Linnell, E. R. H., Brown, A., & Walker, I. (2004). The present and future role of photodynamic therapy in cancer treatment. Lancet Oncology, 5(8), 497–508. https://doi.org/10.1016/s1470-2045(04)01529-3

Article  CAS  PubMed  Google Scholar 

Szacilowski, K., Macyk, W., Drzewiecka-Matusek, A., Brindell, M., & Stochel, G. (2005). Bioinorganic photochemistry: Frontiers and mechanisms. Chemical Reviews, 105(6), 2647–2694. https://doi.org/10.1021/cr030707e

Article  CAS  PubMed  Google Scholar 

Bednarski, P. J., Mackay, F. S., & Sadler, P. J. (2007). Photoactivatable platinum complexes. Anti-Cancer Agents in Medicinal Chemistry, 7(1), 75–93. https://doi.org/10.2174/187152007779314053

Article  CAS  PubMed  Google Scholar 

Ronconi, L., & Sadler, P. J. (2007). Using coordination chemistry to design new medicines. Coordination Chemistry Reviews, 251(13–14), 1633–1647. https://doi.org/10.1016/j.ccr.2006.11.017

Article  CAS  Google Scholar 

Farrer, N. J., & Sadler, P. J. (2008). Photochemotherapy: Targeted activation of metal anticancer complexes. Australian Journal of Cheimstry, 61(9), 669–674. https://doi.org/10.1071/CH08088

Article  CAS  Google Scholar 

Smith, N. A., & Sadler, P. J. (2013). Photoactivatable metal complexes: From theory to applications in biotechnology and medicine. Philosophical Transactions of the Royal Society A, 371, 20120519. https://doi.org/10.1098/rsta.2012.0519

Article  CAS  Google Scholar 

Farrer, N. J., Salassa, L., & Sadler, P. J. (2009). Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Transactions. https://doi.org/10.1039/B917753A

Article  PubMed  Google Scholar 

Knoll, J. D., & Turro, C. (2015). Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coordination Chemistry Reviews, 282–283, 110–126. https://doi.org/10.1016/j.ccr.2014.05.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnstone, T. C., Suntharalingam, K., & Lippard, S. J. (2016). The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chemical Reviews, 116(5), 3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gurruchaga-Pereda, V. J., Martínez, A., Terenzi, A., & Salassa, L. (2019). Anticancer platinum agents and light. Inorganica Chimica Acta, 495, 118981. https://doi.org/10.1016/j.ica.2019.118981

Article  CAS  Google Scholar 

Monro, S., Colon, K. L., Yin, H., Roque, J., III., Konda, P., Gujar, S. H., Hummel, R. P., Lilge, T. L., Cameron, C. G., & McFarland, S. H. A. (2019). Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, 19, 797–828.

Article  Google Scholar 

Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumor growth. Nature Reviews Cancer, 2, 38–47. https://doi.org/10.1038/nrc704

Article  CAS  PubMed  Google Scholar 

Holder, A. A., Swavey, Sh., & Brewer, K. (2004). Design aspects for the development of mixed-metal supramolecular complexes capable of visible light induced photocleavage of DNA. Inorganic Chemistry, 43(1), 303–308. https://doi.org/10.1021/ic035029t

Article  CAS  PubMed  Google Scholar 

Wang, J., Higgins, S. L. H., Winkel, B. S. J., & Brewer, K. J. (2011). A new Os, Rh bimetallic with O2 independent DNA cleavage and DNA photobinding with red therapeutic light excitation. Chemical Communications, 47, 9786–9788. https://doi.org/10.1039/C1CC11562F

Article  CAS  PubMed  Google Scholar 

Wang, J., Zigler, D. F., Hurst, N., Othee, H., Winkel, B. S. J., & Brewer, K. J. (2012). A new, bioactive structural motif: Visible light induced DNA photobinding and oxygen independent photocleavage by RuII, RhIII bimetallics. Journal of Inorganic Biochemistry, 116, 135–139. https://doi.org/10.1016/j.jinorgbio.2012.06.015

Article  CAS  PubMed  Google Scholar 

Wang, J., Newman, J., Higgins, S. L., Brewer, K. M., Winkel, B. S., & Brewer, K. J. (2013). Red-light-induced inhibition of DNA replication and amplification by PCR with an Os/Rh supramolecule. Angewandte Chemie International Edition, 52(4), 1262–1265. https://doi.org/10.1002/anie.201207083

Article  CAS  PubMed  Google Scholar 

Angeles-Boza, A. M., Bradley, P. M., Fu, P.K.-L., Wicke, S. E., Bacsa, J., Dunbar, K. R., & Turro, C. (2004). DNA binding and photocleavage in vitro by new dirhodium(II) dppz complexes: Correlation to cytotoxicity and photocytotoxicity. Inorganic Chemistry, 43(26), 8510–8519. https://doi.org/10.1021/ic049091h

Article  CAS  PubMed  Google Scholar 

Angeles-Boza, A. M., Bradley, P. M., Fu, P.K.-L., Shatruk, M., Hilfiger, M. G., Dunbar, K. R., & Turro, C. (2005). Photocytotoxicity of a new Rh2(II, II) complex: Increase in cytotoxicity upon irradiation similar to that of PDT agent hematoporphyrin. Inorganic Chemistry, 44(21), 7262–7264. https://doi.org/10.1021/ic0500715

Article  CAS  PubMed  Google Scholar 

Lutterman, D. A., Fu, P.K.-L., & Turro, C. (2006). cis-[Rh2(µ-O2CCH3)2(CH3CN)6]2+ as a photoactivated cisplatin analog. Journal of American Chemical Society, 128(3), 738–739. https://doi.org/10.1021/ja057620q

Article  CAS  Google Scholar 

Angeles-Boza, A. M., Chifotides, H. T., Aguirre, J. D., Chouai, A., Fu, P.K.-L., Dunbar, K. R., & Turro, C. (2006). Dirhodium(II, II) complexes: Molecular characteristics that affect in vitro activity. Journal of Medical Chemistry, 49(23), 6841. https://doi.org/10.1021/jm060592h

Article  CAS  Google Scholar 

Aguirre, J. D., Angeles-Boza, A. M., Chouai, A., Turro, C., Pellois, J.-P., & Dunbar, K. R. (2009). Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity. Dalton Transactions. https://doi.org/10.1039/B915357H

Article  PubMed  Google Scholar 

Joyce, L. E., Aguirre, J. D., Angeles-Boza, A. M., Chouai, A., Fu, P.K.-L., Dunbar, K. R., & Turro, C. (2010). Photophysical properties, DNA photocleavage, and photocytotoxicity of a series of dppn dirhodium(II, II) complexes. Inorganic Chemistry, 49(12), 5371–5376. https://doi.org/10.1021/ic100588d

Article  CAS  PubMed  Google Scholar 

Li, Z., Burya, S. J., Turro, C., & Dunbar, K. R. (2013). Photochemistry and DNA photocleavage by a new unsupported dirhodium(II, II) complex. Philosophical Transactions of the Royal Society A., 371, 20120128. https://doi.org/10.1098/rsta.2012.0128

Article  CAS  Google Scholar 

Lin, S. H., & Turro, C. (2021). dirhodium complexes as panchromatic sensitizers, electrocatalysts, and photocatalysts. Chemistry: A European Journal, 27(17), 5379–5387. https://doi.org/10.1002/chem.202003950

Article  CAS  PubMed  Google Scholar 

Shushakov, A. A., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2017). Primary photochemical processes for Pt(IV) diazido complexes prospective in photodynamic therapy of tumors. Dalton Transactions, 46(29), 9440–9450. https://doi.org/10.1039/C7DT01529A

Article  CAS  PubMed  Google Scholar 

Vernooij, R. R., Joshi, T., Horbury, M. D., Graham, B., izgorodina, E. I., stavros, vg, sadler, pj, spiccia, l, & wood, br. (2018). spectroscopic studies on photoinduced reactions of the anticancer prodrug, trans, trans, trans-[Pt(N3)2(OH)2(py)2]. Chemistry: A European Journal, 24(22), 5790–5803. https://doi.org/10.1002/chem.201800161

Article  CAS  PubMed  Google Scholar 

Zhdankin, G. I., Grivin, V. P., Plyusnin, V. F., Tkachenko, P. A., Vasilchenko, D. B., & Glebov, E. M. (2023). Chain photosolvation of trans, trans, trans-[PtIV(py)2(N3)2(OH)2] complex prospective as light-activated antitumor agent. Mendeleev Communications, 33(1), 61–63. https://doi.org/10.1016/j.mencom.2023.01.019

Article  CAS  Google Scholar 

Matveeva, S. G., Shushakov, A. A., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2018). cis, fac-[RuCl2(DMSO)3(H2O)] complex exhibits ultrafast photochemical aquation/rearrangement. Photochemical & Photobiological Sciences, 17(9), 1222–1228. https://doi.org/10.1039/C8PP00232K

Article  CAS  Google Scholar 

Shushakov, A. A., Matveeva, S. G., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2020). Mechanistic study of the trans, cis, cis-[RuCl2(DMSO)2(H2O)2] complex photochemistry in aqueous solutions. Photochemical & Photobiological Sciences, 19(9), 1222–1229. https://doi.org/10.1039/D0PP00178C

Article  CAS  Google Scholar 

Glebov, E. M.

留言 (0)

沒有登入
gif