Obtainment and Inoculation of Acinetobacter pittii Strain JJ-2, and Combined Action with Plants for Formaldehyde and CO2 Removal: A Research Study

Goldemberg J, Martinez-Gomez J, Sagar A et al (2018) Household air pollution, health, and climate change: cleaning the air. Environ Res Lett 13(3):030201. https://doi.org/10.1088/1748-9326/aaa49d

Article  Google Scholar 

Kang X, Jin D, Jiang L et al (2022) Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Chin Med 17(1):30. https://doi.org/10.1186/s13020-022-00587-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim KJ, Ahn HG (2012) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Micropor Mesopor Mat 152:78–83. https://doi.org/10.1016/j.micromeso.2011.11.051

Article  CAS  Google Scholar 

Huang Y, Ho SSH, Lu Y et al (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21(1):56. https://doi.org/10.3390/molecules21010056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Jiang Y, Peng S, Jiang F (2010) Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes. J Hazard Mater 182(1):90–96. https://doi.org/10.1016/j.jhazmat.2010.06.002

Article  CAS  PubMed  Google Scholar 

Shao Y, Wang Y, Zhao R et al (2020) Biotechnology progress for removal of indoor gaseous formaldehyde. Appl Microbiol Biotechnol 104(9):3715–3727. https://doi.org/10.1007/s00253-020-10514-1

Article  CAS  PubMed  Google Scholar 

Teiri H, Pourzamani H, Hajizadeh Y (2018) Phytoremediation of VOCs from indoor air by ornamental potted plants: a pilot study using a palm species under the controlled environment. Chemosphere 197:375–381. https://doi.org/10.1016/j.chemosphere.2018.01.078

Article  CAS  PubMed  Google Scholar 

Liu L, Liu J, Zeng Y et al (2019) Formaldehyde adsorption in carbon nanopores—new insights from molecular simulation. Chem Eng J 370:866–874. https://doi.org/10.1016/j.cej.2019.03.262

Article  CAS  Google Scholar 

Su Y, Liang Y (2015) Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum). J Hazard Mater 291:120–128. https://doi.org/10.1016/j.jhazmat.2015.03.001

Article  CAS  PubMed  Google Scholar 

Li J, Zhong J, Zhan T et al (2019) Indoor formaldehyde removal by three species of Chlorphytum comosum under the long-term dynamic fumigation system. Environ Sci Pollut R 26(36):36857–36868. https://doi.org/10.1007/s11356-019-06701-x

Article  CAS  Google Scholar 

Teiri H, Hajizadeh Y, Azhdarpoor A (2022) A review of different phytoremediation methods and critical factors for purification of common indoor air pollutants: an approach with sensitive analysis. Air Qual Atmos Health 15:373–439. https://doi.org/10.1007/s11869-021-01118-3

Article  CAS  Google Scholar 

Good N, Carpenter T, Anderson GB et al (2019) Development and validation of models to predict personal ventilation rate for air pollution research. J Expo Sci Environ Epidemiol 29(4):568–577. https://doi.org/10.1038/s41370-018-0067-4

Article  CAS  PubMed  Google Scholar 

Shao Y, Wang Y, Yi F et al (2019) Gaseous formaldehyde degrading by Methylobacterium sp. XJLW Appl Biochem Biotechnol 189(1):262–272. https://doi.org/10.1007/s12010-019-03001-5

Article  CAS  PubMed  Google Scholar 

Zhao H, Geng Y, Fan J et al (2013) Isolation and identification of Paracoccus sp. FD3 and evaluation of its formaldehyde degradation kinetics. Biotechnol Bioprocess Eng 18(2):300–305. https://doi.org/10.1007/s12257-012-0449-8

Article  CAS  Google Scholar 

Vergara-Fernández A, Yánez D, Morales P et al (2018) Biofiltration of benzo[α]pyrene, toluene and formaldehyde in air by a consortium of Rhodococcus erythropolis and Fusarium solani: effect of inlet loads, gas flow and temperature. Chem Eng J 332:702–710. https://doi.org/10.1016/j.cej.2017.09.095

Article  CAS  Google Scholar 

Wakayama K, Yamaguchi S, Takeuchi A et al (2016) Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica. J Biosci Bioeng 122(5):545–549. https://doi.org/10.1016/j.jbiosc.2016.03.022

Article  CAS  PubMed  Google Scholar 

Kuiper I, Lagendijk EL, Bloemberg GV et al (2004) Rhizoremediation: a beneficial plant-microbe interaction. MPMI 17(1):6–15. https://doi.org/10.1094/MPMI.2004.17.1.6

Article  CAS  PubMed  Google Scholar 

Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1):385–408. https://doi.org/10.1007/s11104-008-9686-1

Article  CAS  Google Scholar 

Oyabu T, Sawada A, Onodera T et al (2003) Characteristics of potted plants for removing offensive odors. Sens Actuators B Chem 89:131–136. https://doi.org/10.1016/S0925-4005(02)00454-9

Article  CAS  Google Scholar 

Kukkar D, Vellingiri K, Kaur R et al (2019) Nanomaterials for sensing of formaldehyde in air: principles, applications, and performance evaluation. Nano Res 12:225–246. https://doi.org/10.1007/s12274-018-2207-5

Article  CAS  Google Scholar 

Kim KJ, Kil MJ, Song JS et al (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J Am Soc Hortic Sci 133:521–526. https://doi.org/10.21273/JASHS.133.4.521

Article  Google Scholar 

Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109

Article  CAS  PubMed  Google Scholar 

Liang L, Zhigang Z, Xiaoli H et al (2016) Isolation, identification, and optimization of culture conditions of a bioflocculant-producing bacterium Bacillus megaterium SP1 and its application in aquaculture wastewater treatment. BioMed Res Int 2016:2758168. https://doi.org/10.1155/2016/2758168

Article  CAS  Google Scholar 

Acbd M, Higashi EN, Goncalves AN et al (2000) A novel approach for the definition of the inorganic medium components formicropropagation of yellow passionfruit (Passiflora edulis sims. F. Flavicarpa Deg.). In Vitro Cell Dev Biol 36:527–531. https://doi.org/10.1007/s11627-000-0094-3

Article  Google Scholar 

Kashi AM, Tahermanesh K, Chaichian S et al (2014) How to prepare biological samples and live tissues for scanning electron microscopy (SEM). GMJ 3(2):63–80. https://doi.org/10.31661/gmj.v3i2.267

Article  Google Scholar 

Li J, Zhong J, Liu Q et al (2021) Indoor formaldehyde removal by three species of Chlorophytum comosum under dynamic fumigation system: part 2—plant recovery. Environ Sci Pollut R 28(7):8453–8465. https://doi.org/10.1007/s11356-020-11167-3

Article  CAS  Google Scholar 

Fumasoli A, Bürgmann H, Weissbrodt DG et al (2017) Growth of nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content. Environ Sci Technol 51:6857–6866. https://doi.org/10.1021/acs.est.7b00392

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhumakayev AR, Vörös M, Szekeres A et al (2021) Comprehensive characterization of stress tolerant bacteria with plant growth-promoting potential isolated from glyphosate-treated environment. World J Pediatr 37:94. https://doi.org/10.1007/s11274-021-03065-8

Article  CAS  Google Scholar 

Toma MK, Ruklisha MP, Vanags JJ et al (1991) Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol Bioeng 38:552–556. https://doi.org/10.1002/bit.260380514

Article  CAS  PubMed  Google Scholar 

Garcia-Ochoa F, Gomez E, Santos VE et al (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49(3):289–307. https://doi.org/10.1016/j.bej.2010.01.011

Article  CAS  Google Scholar 

Tolosa L, Kostov Y, Harms P et al (2002) Non-invasive measurement of dissolved oxygen in shake flasks. Biotechnol Bioeng 80(5):594–597. https://doi.org/10.1002/bit.10409

Article  CAS  PubMed  Google Scholar 

Brandt KK, Sjøholm OR, Krogh KA et al (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43(8):2963–2968. https://doi.org/10.1021/es803546y

Article  CAS  PubMed  Google Scholar 

Bertels F, Gallie J, Rainey PB (2017) Identification and characterization of domesticated bacterial transposases. Genome Biol Evol 9(8):2110–2121. https://doi.org/10.1093/gbe/evx146

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirdamadi S, Rajabi A, Khalilzadeh P et al (2005) Isolation of bacteria able to metabolize high concentrations of formaldehyde. World J Microbiol Biotechnol 21(6):1299–1301. https://doi.org/10.1007/s11274-005-2443-1

Article  CAS  Google Scholar 

Pereira NS, Zaiat M (2009) Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR). J Hazard Mater 163(2):777–782. https://doi.org/10.1016/j.jhazmat.2008.07.028

Article  CAS  PubMed  Google Scholar 

Tateishi T, Horikoshi T, Tsubota H et al (1989) Application of the chloroform fumigation-incubation method to the estimation of soil microbial biomass in burned and unburned Japanese red pine forests. Fems Microbiol Lett 5(3):163–171.

留言 (0)

沒有登入
gif