Ramaker C, Marinus J, Stiggelbout AM, van Hilten BJ (2002) Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord 17:867–876. https://doi.org/10.1002/mds.10248
Marras C, Beck JC, Bower JH et al (2018) Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis 4:1–7. https://doi.org/10.1038/s41531-018-0058-0
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R (2020) Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 11:356
Bhidayasiri R, Tarsy D (2012) Parkinson’s disease: Hoehn and Yahr scale. In: Bhidayasiri R, Tarsy D (eds) Movement disorders: a video atlas: a video atlas. Humana Press, Totowa, NJ, pp 4–5
Zhao YJ, Wee HL, Chan Y-H et al (2010) Progression of Parkinson’s disease as evaluated by Hoehn and Yahr stage transition times. Mov Disord 25:710–716. https://doi.org/10.1002/mds.22875
Pressley JC, Louis ED, Tang M-X et al (2003) The impact of comorbid disease and injuries on resource use and expenditures in parkinsonism. Neurology 60:87–93. https://doi.org/10.1212/WNL.60.1.87
Article CAS PubMed Google Scholar
Fasano A, Lang AE, Espay AJ (2018) What is “essential” about essential tremor? A diagnostic placeholder: nosology of tremor. Mov Disord 33:58–61. https://doi.org/10.1002/mds.27288
Pelicioni PHS, Menant JC, Latt MD, Lord SR (2019) Falls in Parkinson’s disease subtypes: risk factors, locations and circumstances. Int J Environ Res Public Health 16:2216. https://doi.org/10.3390/ijerph16122216
Article PubMed PubMed Central Google Scholar
Davey H, Imms C, Fossey E (2015) “Our child’s significant disability shapes our lives”: experiences of family social participation. Disabil Rehabil 37:2264–2271. https://doi.org/10.3109/09638288.2015.1019013
Giladi N, Treves TA, Paleacu D et al (2000) Risk factors for dementia, depression and psychosis in long-standing Parkinson’s disease. J Neural Transm 107:59–71. https://doi.org/10.1007/s007020050005
Article CAS PubMed Google Scholar
Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612
Marinus J, Zhu K, Marras C et al (2018) Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol 17:559–568. https://doi.org/10.1016/S1474-4422(18)30127-3
Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424
Galindez JM, Juwara L, Cressatti M et al (2021) Salivary heme oxygenase-1: a potential biomarker for central neurodegeneration. J Cent Nerv Syst Dis 13. https://doi.org/10.1177/11795735211029114
Peduzzi P, Concato J, Kemper E et al (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379. https://doi.org/10.1016/S0895-4356(96)00236-3
Article CAS PubMed Google Scholar
Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 165:710–718
Sanchez-Pinto LN, Venable LR, Fahrenbach J, Churpek MM (2018) Comparison of variable selection methods for clinical predictive modeling. Int J Med Inform 116:10–17. https://doi.org/10.1016/j.ijmedinf.2018.05.006
Article PubMed PubMed Central Google Scholar
Ishwaran H (2007) Variable importance in binary regression trees and forests. Electron J Stat 1:519–537. https://doi.org/10.1214/07-EJS039
Lewis RJ (2000) An introduction to classification and regression tree (CART) analysis. In: Annual meeting of the society for academic emergency medicine in. Citeseer, San Francisco, California
Loh W-Y (2011) Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Discov 1:14–23. https://doi.org/10.1002/widm.8
Marshall RJ (2001) The use of classification and regression trees in clinical epidemiology. J Clin Epidemiol 54:603–609. https://doi.org/10.1016/S0895-4356(00)00344-9
Article CAS PubMed Google Scholar
Alonzo TA (2009) Clinical prediction models: a practical approach to development, validation, and updating: by Ewout W. Steyerberg. Am J Epidemiol 170:528. https://doi.org/10.1093/aje/kwp129
Harrell FE Jr, Lee KL, Califf RM et al (1984) Regression modelling strategies for improved prognostic prediction. Stat Med 3:143–152. https://doi.org/10.1002/sim.4780030207
LeDell E, Petersen M, van der Laan M (2015) Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Electron J Stat 9:1583–1607. https://doi.org/10.1214/15-EJS1035
Steyerberg EW (2019) Clinical prediction models: a practical approach to development, validation, and updating. Springer International Publishing, Cham
Ren X, Lin J, Stebbins GT et al (2021) Prognostic modeling of Parkinson’s disease progression using early longitudinal patterns of change. Mov Disord 36:2853–2861. https://doi.org/10.1002/mds.28730
Article PubMed PubMed Central Google Scholar
Coelho M, Ferreira JJ (2012) Late-stage Parkinson disease. Nat Rev Neurol 8:435–442. https://doi.org/10.1038/nrneurol.2012.126
Article CAS PubMed Google Scholar
Coelho M, Marti MJ, Tolosa E et al (2010) Late-stage Parkinson’s disease: the Barcelona and Lisbon cohort. J Neurol 257:1524–1532. https://doi.org/10.1007/s00415-010-5566-8
Coelho M, Ferreira JJ (2012) Late-stage Parkinson disease. Nature Reviews Neurology 8(8):435–442
Schrag A, Choudhury M, Kaski D, Gallagher DA (2015) Why do patients with Parkinson’s disease fall? A cross-sectional analysis of possible causes of falls. NPJ Parkinsons Dis 1:1–6. https://doi.org/10.1038/npjparkd.2015.11
Custodio N, Lira D, Herrera-Perez E et al (2016) Predictive model for falling in Parkinson disease patients. Eneurologicalsci 5:20–24
Article PubMed PubMed Central Google Scholar
Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the Lasso. Ann Stat 34:1436–1462. https://doi.org/10.1214/009053606000000281
Harrell FE (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer
Riley RD, Ensor J, Snell KIE et al (2020) Calculating the sample size required for developing a clinical prediction model. BMJ 368:m441. https://doi.org/10.1136/bmj.m441
Kasai T, Hirose M, Yaegashi K et al (2002) Preoperative risk factors of intraoperative hypothermia in major surgery under general anesthesia. Anesth Analg 95:1381–1383. https://doi.org/10.1097/00000539-200211000-00051
Comments (0)