Sensing health: a bibliometric analysis of wearable sensors in healthcare

Nan X, Wang X, Kang T, Zhang J, Dong L, Dong J, Wei D. Review of flexible wearable sensor devices for biomedical application. Micromachines. 2022;13(9):1395. https://doi.org/10.3390/mi13091395.

Article  Google Scholar 

Di Pasquale V, De Simone V, Radano M, Miranda S. Wearable devices for health and safety in production systems: a literature review. IFAC-PapersOnLine. 2022;55(10):341–6. https://doi.org/10.1016/j.ifacol.2022.09.410.

Article  Google Scholar 

Nasiri S, Khosravani MR. Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors Actuators A Phys. 2020;312:112105. https://doi.org/10.1016/j.sna.2020.112105.

Article  Google Scholar 

Liu B, Ridder A, Smith V, Thilaganathan B, Bhide A. Feasibility of antenatal ambulatory fetal electrocardiography: a systematic review. J Matern Fetal Neonatal Med. 2023;36(1):2204390. https://doi.org/10.1080/14767058.2023.2204390.

Article  Google Scholar 

Boulif A, Ananou B, Ouladsine M, Delliaux S. A literature review: ECG-based models for arrhythmia diagnosis using artificial intelligence techniques. Bioinform Biol Insights. 2023;17:11779322221149600. https://doi.org/10.1177/11779322221149600.

Article  Google Scholar 

dos Santos Silva A, Correia MV, Costa A, da Silva HP. Towards industrially feasible invisible electrocardiography (ECG) in sanitary facilities. In: 2023 IEEE 7th Portuguese meeting on bioengineering (ENBENG); 2023, June. p. 1–4. https://doi.org/10.1109/ENBENG58165.2023.10175356.

Chapter  Google Scholar 

Rizqyawan MI, Nuryatno ET, Fakhrurroja H, Munandar A, Wibowo JW, Kusumandari DE, Salim TI. Exploration of ECG-based real-time arrhythmia detection: a systematic literature review. In: 2022 IEEE international conference advancement in data science, E-learning and information systems (ICADEIS); 2022, November. p. 01–8. https://doi.org/10.1109/ICADEIS56544.2022.10037399.

Chapter  Google Scholar 

Hysing J, Gibbs C, Holla ØL, Thalamus J, Haugaa KH. Moderately prolonged QTc in computer-assessed ECG, random variation or significant risk factor? A Literature Review. Cardiogenetics. 2022;12(3):261–9. https://doi.org/10.3390/cardiogenetics12030025.

Article  Google Scholar 

Ismail L, Karwowski W, Hancock PA, Taiar R, Fernandez-Sumano R. Electroencephalography (EEG) physiological indices reflecting human physical performance: a systematic review using updated PRISMA. J Integr Neurosci. 2023;22(3):62. https://doi.org/10.31083/j.jin2203062.

Article  Google Scholar 

Mesin L, Cipriani GE, Amanzio M. Electroencephalography-Based Brain–Machine Interfaces in Older Adults: A Literature Review. Bioengineering. 2023;10(4):395. https://doi.org/10.3390/bioengineering10040395.

Article  Google Scholar 

Astuti RD, Suhardi B, Laksono PW, Susanto N, Muguro J. Literature review: impact of noise on cognitive performance using electroencephalography. Appl Mech Mater. 2023;913:131–47. https://doi.org/10.4028/p-052746.

Article  Google Scholar 

Anders C, Arnrich B. Wearable electroencephalography and multi-modal mental state classification: a systematic literature review. Comput Biol Med. 2022:106088. https://doi.org/10.1016/j.compbiomed.2022.106088.

Farizal A, Wibawa AD, Pamungkas Y, Pratiwi M, Mas A. Classifying known/unknown information in the brain using electroencephalography (EEG) signal analysis. In: 2022 11th IEEE electrical power, electronics, communications, controls and informatics seminar (EECCIS); 2022, August. p. 362–7. https://doi.org/10.1109/EECCIS54468.2022.9902928.

Chapter  Google Scholar 

Alix JJ, Plesia M, Shaw PJ, Mead RJ, Day JC. Combining electromyography and Raman spectroscopy: optical EMG. Muscle Nerve. 2023. https://doi.org/10.1002/mus.27937.

Hassan ZU, Bashir N, Iltaf A. Electromyography and speech controlled prototype robotic Car using CNN based classifier for EMG. In: 2022 IEEE international conference on emerging trends in electrical, control, and telecommunication engineering (ETECTE); 2022, December. p. 1–5. https://doi.org/10.1109/ETECTE55893.2022.10007092.

Chapter  Google Scholar 

Yuan W, Zou K, Zhao Y, Xi N. Detection of human action intention by electromyography (EMG). In: 2022 IEEE 12th international conference on CYBER Technology in Automation, control, and intelligent systems (CYBER); 2022, July. p. 750–4. https://doi.org/10.1109/CYBER55403.2022.9907225.

Chapter  Google Scholar 

Toledo-Peral CL, Vega-Martínez G, Mercado-Gutiérrez JA, Rodríguez-Reyes G, Vera-Hernández A, Leija-Salas L, Gutiérrez-Martínez J. Virtual/augmented reality for rehabilitation applications using electromyography as control/biofeedback: systematic literature review. Electronics. 2022;11(14):2271. https://doi.org/10.3390/electronics11142271.

Article  Google Scholar 

Wu D, Yang J, Sawan M. Transfer learning on electromyography (EMG) tasks: approaches and beyond. IEEE Transac Neural Syst Rehab Eng. 2023;31. https://doi.org/10.1109/TNSRE.2023.3295453.

Kim KB, Baek HJ. Photoplethysmography in wearable devices: a comprehensive review of technological advances, current challenges, and future directions. Electronics. 2023;12(13):2923. https://doi.org/10.3390/electronics12132923.

Article  Google Scholar 

Lyzwinski LN, Elgendi M, Menon C. The use of Photoplethysmography in the assessment of mental health: scoping review. JMIR Mental Health. 2023;10:e40163. https://doi.org/10.2196/40163.

Article  Google Scholar 

Sadaghiani SM, Bhadra S. Acquiring Photoplethysmography (PPG) signal without LED. In: 2023 IEEE international instrumentation and measurement technology conference (I2MTC); 2023, May. p. 1–6. https://doi.org/10.1109/I2MTC53148.2023.10175960.

Chapter  Google Scholar 

Silverio AA, Suarez CG, Silverio LAA, Dino JY, Duran JB, Catambing GEG. An unobtrusive, wireless and wearable single-site blood pressure monitor based on an armband using electrocardiography (ECG) and reflectance Photoplethysmography (PPG) signal processing. Electronics. 2023;12(7):1538. https://doi.org/10.3390/electronics12071538.

Article  Google Scholar 

Ebrahimi Z, Gosselin B. Ultra-low power Photoplethysmography (PPG) sensors: a methodological review. IEEE Sensors J. 2023; https://doi.org/10.1109/jsen.2023.3284818.

Ebrahimkhani M, Johnson EM, Sodhi A, Robinson JD, Rigsby CK, Allen BD, Markl M. A deep learning approach to using wearable Seismocardiography (SCG) for diagnosing aortic valve stenosis and predicting aortic hemodynamics obtained by 4D flow MRI. Ann Biomed Eng. 2023;51(12):2802–11.

Article  Google Scholar 

Balali P, Rabineau J, Hossein A, Tordeur C, Debeir O, Van De Borne P. Investigating cardiorespiratory interaction using ballistocardiography and seismocardiography—a narrative review. Sensors. 2022;22(23):9565. https://doi.org/10.3390/s22239565.

Article  Google Scholar 

Ganti VG, Gazi AH, An S, Srivatsa AV, Nevius BN, Nichols CJ, Tandon A. Wearable Seismocardiography-based assessment of stroke volume in congenital heart disease. J Am Heart Assoc. 2022;11(18):e026067. https://doi.org/10.1161/JAHA.122.026067.

Article  Google Scholar 

Peters C, Rocznik T, Yee SY, Duerichen R, Schnitzbauer VJ. Wearable health device system with normalized seismocardiography signals. U.S. patent application no. 16/975,010. 2021. https://patents.google.com/patent/US20210085216A1/.

Miljković, N., & Šekara, T. B. (2022). A new weighted time window-based method to detect B-point in ICG. https://arxiv.org/abs/2207.04490.

Chabchoub S, Mansouri S, Ben Salah R. Signal processing techniques applied to impedance cardiography ICG signals–a review. J Med Eng Technol. 2022;46(3):243–60. https://doi.org/10.1080/03091902.2022.2026508.

Article  Google Scholar 

Cosoli G, Spinsante S, Scardulla F, D'Acquisto L, Scalise L. Wireless ECG and cardiac monitoring systems: state of the art, available commercial devices and useful electronic components. Measurement. 2021;177:109243. https://doi.org/10.1016/J.MEASUREMENT.2021.109243.

Article  Google Scholar 

DeMarzo AP. Clinical use of impedance cardiography for hemodynamic assessment of early cardiovascular disease and management of hypertension. High Blood Pressure Cardiovasc Prevent. 2020;27(3):203–13. https://doi.org/10.1007/S40292-020-00383-0.

Article  Google Scholar 

Min S, Kim DH, Joe DJ, Kim BW, Jung YH, Lee JH, Lee KJ. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv Mater. 2023:2301627. https://doi.org/10.1002/adma.202301627.

El-Hajj C, Kyriacou PA. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed Signal Process Control. 2020;58:101870. https://doi.org/10.1016/j.bspc.2020.101870.

Article  Google Scholar 

Wen L, Dong S, Zhang Z, Gu C, Mao J. Noninvasive continuous blood pressure monitoring based on wearable radar sensor with preliminary clinical validation. In: 2022 IEEE/MTT-S international microwave symposium-IMS 2022; 2022, June. p. 707–10. https://doi.org/10.1109/IMS37962.2022.9865440.

Chapter  Google Scholar 

Islam SMS, Chow CK, Daryabeygikhotbehsara R, Subedi N, Rawstorn J, Tegegne T, et al. Wearable cuffless blood pressure monitoring devices: a systematic review and meta-analysis. Europ Heart J-Digital Health. 2022;3(2):323–37. https://doi.org/10.1093/ehjdh/ztac021.

Article  Google Scholar 

Kumar A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sens Bio-Sens Res. 2021;33:100434. https://doi.org/10.1016/J.SBSR.2021.100434.

Article  Google Scholar 

Athira S, Ardra S, Unnikrishnan A, Pradeep A, Rajeev SP, SD, B. S. Design of Piezoelectric Heart Rate Monitoring Sensor for wearable applications. In: 2022 IEEE 6th international conference on trends in electronics and informatics (ICOEI); 2022, April. p. 1–6. https://doi.org/10.1109/ICOEI53556.2022.9777147.

Chapter  Google Scholar 

Hashim UN, Salahuddin L, Ikram RRR, Hashim UR, Ngo HC, Mohayat MHN. The design and implementation of Mobile heart monitoring applications using wearable heart rate sensor. Int J Adv Comput Sci Appl. 2021;12(1) https://doi.org/10.14569/IJACSA.2021.0120120.

Harraghy M, Calderon D, Lietz R, Brady J, Makedon F, Becker E. A review of wearable heart rate sensors in research. In: In proceedings of the 12th ACM international conference on PErvasive technologies related to assistive environments; 2019, June. p. 315–6. https://doi.org/10.1145/3316782.3321550.

Chapter  Google Scholar 

Tang X, Yang A, Li L. Optimization of nanofiber wearable heart rate sensor module for human motion detection. Comput Mathematical Methods Med. 2022;2022. https://doi.org/10.1155/2022/1747822.

Shen S, Xiao X, Chen J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem Commun. 2021;57(48):5871–9. https://doi.org/10.1039/D1CC02091A.

Article  Google Scholar 

Huang N, Bian D, Zhou M, Mehta P, Shah M, Rajput KS, Selvaraj N. Pulse rate guided oxygen saturation monitoring using a wearable armband sensor. In: 2022 44th annual international conference of the IEEE engineering in Medicine & Biology Society (EMBC); 2022, July. p. 4303–7. https://doi.org/10.1109/EMBC48229.2022.9871461.

Chapter  Google Scholar 

Phillips C, Liaqat D, Gabel M, de Lara E. WristO2: reliable peripheral oxygen saturation readings from wrist-worn pulse oximeters. In: 2021 IEEE international conference on Pervasive computing and communications workshops and other affiliated events (PerCom workshops); 2021, March. p. 623–9. https://doi.org/10.1109/PERCOMWORKSHOPS51409.2021.9430986.

Chapter  Google Scholar 

Lim CJ, Park JW. Wearable transcutaneous oxygen sensor for health monitoring. Sensors Actuators A Phys. 2019;298:111607. https://doi.org/10.1016/J.SNA.2019.111607.

Article  Google Scholar 

Patel V, Chesmore A, Legner CM, Pandey S. Trends in workplace wearable technologies and connected-worker solutions for next-generation occupational safety, health, and productivity. Adv Intelligent Syst. 2022;4(1):2100099. https://doi.org/10.1002/aisy.202100099.

Article  Google Scholar 

Hearn EL, Byford J, Wolfe C, Agyei C, Hodkinson PD, Pollock RD, Smith TG. Measuring arterial oxygen saturation using wearable devices under varying conditions. Aerospace Med Human Perform. 2023;94(1):42–7. https://doi.org/10.3357/amhp.6078.2023.

Article  Google Scholar 

Yi XI, Sun S, Su D. Wearable device and photoelectric pulse sensor component. U.S. patent application no. 17/622,517. 2022. https://patents.google.com/patent/US20220248968A1/.

Degala SKB, Pandey R, Mishra A, Tiwari AK, Tewari RP. IoT based low-cost pulse oximeter for remote health monitoring. In: International conference on advancements in interdisciplinary research. Cham: Springer Nature Switzerland; 2022, May. p. 191–8. https://doi.org/10.1007/978-3-031-23724-9_18.

Chapter  Google Scholar 

Enoch AJ, English M, Shepperd S. Does pulse oximeter use impact health outcomes? A systematic review. Arch Dis Child. 2016;101(8):694–700. https://doi.org/10.1136/ARCHDISCHILD-2015-309638.

Article 

留言 (0)

沒有登入
gif