Direct Detection of Fluoroquinolone Resistance in Sputum Samples from Tuberculosis Patients by High Resolution Melt Curve Analysis

WHO (2022) Global Tuberculosis Report.

WHO (2022) WHO consolidated guidelines on tuberculosis, Module 4: Treatment- Drug-resistant tuberculosis treatment: 2022 update.

WHO (2020) Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis.

Jabeen K, Shakoor S, Hasan R (2015) Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 32:118–123. https://doi.org/10.1016/j.ijid.2015.01.006

Article  PubMed  Google Scholar 

WHO (2020) Global Tuberculosis Report.

WHO (2021) Information sheet: Practical considerations for implementation of the Cepheid Xpert MTB/XDR test.

WHO (2016) The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: Policy Guidance.

(TAG) TAG (2022) Tuberculosis Diagnostics: Pipeline Report.

Anthwal D, Gupta RK, Bhalla M, Bhatnagar S, Tyagi JS, Haldar S (2017) Direct detection of rifampin and isoniazid resistance in sputum samples from tuberculosis patients by high-resolution melt curve analysis. J Clin Microbiol 55(6):1755–1766. https://doi.org/10.1128/JCM.02104-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keikha M, Karbalaei M (2021) High resolution melting assay as a reliable method for diagnosing drug-resistant TB cases: a systematic review and meta-analysis. BMC Infect Dis 21(1):989. https://doi.org/10.1186/s12879-021-06708-1

Article  PubMed  PubMed Central  Google Scholar 

Micheni LN, Kassaza K, Kinyi H, Ntulume I, Bazira J (2021) Rifampicin and isoniazid drug resistance among patients diagnosed with pulmonary tuberculosis in southwestern Uganda. PLoS ONE 16(10):e0259221. https://doi.org/10.1371/journal.pone.0259221

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma K, Modi M, Kaur H, Sharma A, Ray P, Varma S (2015) rpoB gene high-resolution melt curve analysis: a rapid approach for diagnosis and screening of drug resistance in tuberculous meningitis. Diagn Microbiol Infect Dis 83(2):144–149. https://doi.org/10.1016/j.diagmicrobio.2015.06.010

Article  CAS  PubMed  Google Scholar 

Sharma K, Sharma M, Singh S, Modi M, Sharma A, Ray P, Varma S (2017) Real-time PCR followed by high-resolution melting curve analysis: a rapid and pragmatic approach for screening of multidrug-resistant extrapulmonary tuberculosis. Tuberculosis (Edinb) 106:56–61. https://doi.org/10.1016/j.tube.2017.07.002

Article  CAS  PubMed  Google Scholar 

Haldar S, Chakravorty S, Bhalla M, De Majumdar S, Tyagi JS (2007) Simplified detection of Mycobacterium tuberculosis in sputum using smear microscopy and PCR with molecular beacons. J Med Microbiol 56(Pt 10):1356–1362. https://doi.org/10.1099/jmm.0.47265-0

Article  CAS  PubMed  Google Scholar 

WHO (2021) WHO consolidated guidelines on tuberculosis, Module 3: Diagnosis- Rapid diagnostics for tuberculosis detection0- 2021 update.

WHO (2021) Update on the use of nucleic acid amplification tests to detect TB and drug-resistant TB: rapid communication.

Anthwal D, Gupta RK, Singhal R, Bhalla M, Verma AK, Khayyam KU, Myneedu VP, Sarin R, Gupta A, Gupta NK, Singh M, Sivaswami Tyagi J, Haldar S (2021) Compatibility of a novel filter paper-based bio-safe sputum transport kit with line probe assay for diagnosing drug-resistant tuberculosis: a single-site evaluation study. ERJ Open Res. https://doi.org/10.1183/23120541.00137-2021

Article  PubMed  PubMed Central  Google Scholar 

Zimenkov DV, Antonova OV, Kuz’min AV, Isaeva YD, Krylova LY, Popov SA, Zasedatelev AS, Mikhailovich VM, Gryadunov DA (2013) Detection of second-line drug resistance in Mycobacterium tuberculosis using oligonucleotide microarrays. BMC Infect Dis 13:240. https://doi.org/10.1186/1471-2334-13-240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chawla K, Kumar A, Shenoy VP, Chakrabarty S, Satyamoorthy K (2018) Genotypic detection of fluoroquinolone resistance in drug-resistant Mycobacterium tuberculosis at a tertiary care centre in south Coastal Karnataka, India. Journal of global antimicrobial resistance 13:250–253. https://doi.org/10.1016/j.jgar.2018.01.023

Article  PubMed  Google Scholar 

Pillay S, Steingart KR, Davies GR, Chaplin M, De Vos M, Schumacher SG, Warren R, Theron G (2022) Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst Rev 5(5):CD014841. https://doi.org/10.1002/14651858.CD014841.pub2

Article  PubMed  Google Scholar 

Singh P, Jain A, Dixit P, Prakash S, Jaiswal I, Venkatesh V, Singh M (2015) Prevalence of gyrA and B gene mutations in fluoroquinolone-resistant and -sensitive clinical isolates of Mycobacterium tuberculosis and their relationship with MIC of ofloxacin. J Antibiot 68(1):63–66. https://doi.org/10.1038/ja.2014.95

Article  CAS  Google Scholar 

Singhal R, Reynolds PR, Marola JL, Epperson LE, Arora J, Sarin R, Myneedu VP, Strong M, Salfinger M (2016) Sequence analysis of fluoroquinolone resistance-associated genes gyrA and gyrB in clinical Mycobacterium tuberculosis isolates from patients suspected of having multidrug-resistant tuberculosis in New Delhi. India J Clin Microbiology 54(9):2298–2305. https://doi.org/10.1128/JCM.00670-16

Article  CAS  Google Scholar 

Potdar PT, P, (2013) Development of sequence based molecular diagnostic test to evaluate MDR and XDR in M tuberculosis Patients from Western India. Am J Infect Dis Microb 1(3):50–58

Google Scholar 

Chen X, Kong F, Wang Q, Li C, Zhang J, Gilbert GL (2011) Rapid detection of isoniazid, rifampin, and ofloxacin resistance in Mycobacterium tuberculosis clinical isolates using high-resolution melting analysis. J Clin Microbiol 49(10):3450–3457. https://doi.org/10.1128/JCM.01068-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee AS, Ong DC, Wong JC, Siu GK, Yam WC (2012) High-resolution melting analysis for the rapid detection of fluoroquinolone and streptomycin resistance in Mycobacterium tuberculosis. PLoS ONE 7(2):e31934. https://doi.org/10.1371/journal.pone.0031934

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pholwat S, Liu J, Stroup S, Gratz J, Banu S, Rahman SM, Ferdous SS, Foongladda S, Boonlert D, Ogarkov O, Zhdanova S, Kibiki G, Heysell S, Houpt E (2015) Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes. mBio 6(2):e02273. https://doi.org/10.1128/mBio.02273-14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sirous M, Khosravi AD, Tabandeh MR, Salmanzadeh S, Ahmadkhosravi N, Amini S (2018) Molecular detection of rifampin, isoniazid, and ofloxacin resistance in Iranian isolates of Mycobacterium tuberculosis by high-resolution melting analysis. Infection and drug resistance 11:1819–1829. https://doi.org/10.2147/IDR.S178831

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva JL, Leite GG, Bastos GM, Lucas BC, Shinohara DK, Takinami JS, Miyata M, Fajardo CM, Luchessi AD, Leite CQ, Cardoso RF, Hirata RD, Hirata MH (2013) Plasmid-based controls to detect rpoB mutations in Mycobacterium tuberculosis by quantitative polymerase chain reaction-high-resolution melting. Mem Inst Oswaldo Cruz 108(1):106–109. https://doi.org/10.1590/s0074-02762013000100017

Article  PubMed  PubMed Central  Google Scholar 

Bentaleb EM, El Messaoudi MD, Abid M, Messaoudi M, Yetisen AK, Sefrioui H, Amzazi S, Ait Benhassou H (2017) Plasmid-based high-resolution melting analysis for accurate detection of rpoB mutations in Mycobacterium tuberculosis isolates from Moroccan patients. BMC Infect Dis 17(1):548. https://doi.org/10.1186/s12879-017-2666-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO (2016) Tuberculosis Diagnostics: Molecular Line-Probe Assay for the detection of resistance to Second-Line Anti-TB drugs (SL-LPA).

留言 (0)

沒有登入
gif