The MSMEG_1586 of M. smegmatis Is a Penicillin-Interactive Enzyme That Can Potentially Hydrolyse Aztreonam and Cephalosporins

Tarashi S, Siadat SD, Fateh A (2022) Nontuberculous mycobacterial resistance to antibiotics and disinfectants: challenges still ahead. Biomed Res Int 2022:8168750. https://doi.org/10.1155/2022/8168750

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Jager V, Gupte N, Nunes S, Barnes GL, van Wijk RC, Mostert J, Dorman SE, Abulfathi AA, Upton CM, Faraj A, Nuermberger EL, Lamichhane G, Svensson EM, Simonsson USH, Diacon AH, Dooley KE, Team CS (2022) Early bactericidal activity of meropenem plus clavulanate (with or without rifampin) for tuberculosis the COMRADE randomized, phase 2A clinical trial. Am J Resp Crit Care 205(10):1228–1235. https://doi.org/10.1164/rccm.202108-1976OC

Article  Google Scholar 

Pandey SD, Pal S, Kumar NG, Bansal A, Mallick S, Ghosh AS (2018) Two DD-carboxypeptidases from mycobacterium smegmatis affect cell surface properties through regulation of peptidoglycan cross-linking and glycopeptidolipids. J Bacteriol 200(14):e00760-17. https://doi.org/10.1128/JB.00760-17

Article  PubMed  PubMed Central  Google Scholar 

Ghosh AS, Chowdhury C, Nelson DE (2008) Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 16(7):309–317. https://doi.org/10.1016/j.tim.2008.04.006

Article  CAS  PubMed  Google Scholar 

Mizoguchi A, Hitomi S (2019) Cefotaxime-non-susceptibility of Haemophilus influenzae induced by additional amino acid substitutions of G555E and Y557H in altered penicillin-binding protein 3. J Infect Chemother 25(7):509–513. https://doi.org/10.1016/j.jiac.2019.02.010

Article  PubMed  Google Scholar 

Pandey SD, Jain D, Kumar N, Adhikary A, Kumar NG, Ghosh AS (2020) MSMEG_2432 of Mycobacterium smegmatis mc(2)155 is a dual function enzyme that exhibits DD-carboxypeptidase and beta-lactamase activities. Microbiol-Sgm 166(6):546–553. https://doi.org/10.1099/mic.0.000902

Article  CAS  Google Scholar 

Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S (2019) Cell wall peptidoglycan in mycobacterium tuberculosis: an Achilles’ heel for the TB-causing pathogen. FEMS Microbiol Rev 43(5):548–575. https://doi.org/10.1093/femsre/fuz016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar G, Galanis C, Batchelder HR, Townsend CA, Lamichhane G (2022) Penicillin binding proteins and beta-lactamases of mycobacterium tuberculosis: reexamination of the historical paradigm. mSphere 7(1):e0003922. https://doi.org/10.1128/msphere.00039-22

Article  PubMed  Google Scholar 

Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DAI (2022) The biogenesis of beta-lactamase enzymes. Microbiology. https://doi.org/10.1099/mic.0.001217

Article  PubMed  PubMed Central  Google Scholar 

Flores AR, Parsons LM, Pavelka MS (2005) Genetic analysis of the beta-lactamases of mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology 151(Pt 2):521–532. https://doi.org/10.1099/mic.0.27629-0

Article  CAS  PubMed  Google Scholar 

Bansal A, Kar D, Murugan RA, Mallick S, Dutta M, Pandey SD, Chowdhury C, Ghosh AS (2015) A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase. Microbiology 161(Pt 5):1081–1091. https://doi.org/10.1099/mic.0.000074

Article  CAS  PubMed  Google Scholar 

Bansal A, Kar D, Pandey SD, Matcha A, Kumar NG, Nathan S, Ghosh AS (2017) A tyrosine residue along with a glutamic acid of the omega-like loop governs the beta-lactamase activity of MSMEG_4455 in mycobacterium smegmatis. Protein J 36(3):220–227. https://doi.org/10.1007/s10930-017-9713-2

Article  CAS  PubMed  Google Scholar 

Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, Retailleau P, Iorga BI (2017) Beta-lactamase database (BLDB)—structure and function. J Enzym Inhib Med Chem 32(1):917–919. https://doi.org/10.1080/14756366.2017.1344235

Article  CAS  Google Scholar 

Mora-Ochomogo M, Lohans CT (2021) beta-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 12(10):1623–1639. https://doi.org/10.1039/d1md00200g

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawa T, Kooguchi K, Moriyama K (2020) Molecular diversity of extended-spectrum beta-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care 8:13. https://doi.org/10.1186/s40560-020-0429-6

Article  PubMed  PubMed Central  Google Scholar 

Galleni M, Amicosante G, Frere JM (1988) A survey of the kinetic parameters of class C beta-lactamases: cephalosporins and other beta-lactam compounds. Biochem J 255(1):123–129. https://doi.org/10.1042/bj2550123

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awasthi S, Gupta S, Tripathi R, Nair NN (2018) Mechanism and kinetics of aztreonam hydrolysis catalyzed by class-C beta-Lactamase: a temperature-accelerated sliced sampling study. J Phys Chem B 122(15):4299–4308. https://doi.org/10.1021/acs.jpcb.8b01287

Article  CAS  PubMed  Google Scholar 

Mazzella LJ, Pratt RF (1989) Effect of the 3′-leaving group on turnover of cephem antibiotics by a class C beta-lactamase. Biochem J 259(1):255–260. https://doi.org/10.1042/bj2590255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong BG, Na JH, Bae DW, Park SB, Lee HS, Cha SS (2021) Crystal structure of AmpC BER and molecular docking lead to the discovery of broad inhibition activities of halisulfates against beta-lactamases. Comput Struct Biotechnol J 19:145–152. https://doi.org/10.1016/j.csbj.2020.12.015

Article  CAS  PubMed  Google Scholar 

Na JH, Lee TH, Park SB, Kim MK, Jeong BG, Chung KM, Cha SS (2018) In vitro and in vivo inhibitory activity of NADPH against the AmpC BER class C beta-lactamase. Front Cell Infect Microbiol 8:441. https://doi.org/10.3389/fcimb.2018.00441

Article  CAS  PubMed  PubMed Central  Google Scholar 

Philippon A, Arlet G, Labia R, Iorga BI (2022) Class C beta-lactamases: molecular characteristics. Clin Microbiol Rev 35(3):e0015021. https://doi.org/10.1128/cmr.00150-21

Article  CAS  PubMed  Google Scholar 

Mack AR, Barnes MD, Taracila MA, Hujer AM, Hujer KM, Cabot G, Feldgarden M, Haft DH, Klimke W, van den Akker F, Vila AJ, Smania A, Haider S, Papp-Wallace KM, Bradford PA, Rossolini GM, Docquier JD, Frere JM, Galleni M, Hanson ND, Oliver A, Plesiat P, Poirel L, Nordmann P, Palzkill TG, Jacoby GA, Bush K, Bonomo RA (2020) A standard numbering scheme for class C beta-lactamases. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01841-19

Article  PubMed  PubMed Central  Google Scholar 

Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J (2019) beta-lactamases and beta-lactamase inhibitors in the 21st century. J Mol Biol 431(18):3472–3500. https://doi.org/10.1016/j.jmb.2019.04.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldberg SD, Iannuccilli W, Nguyen T, Ju JY, Cornish VW (2003) Identification of residues critical for catalysis in a class C beta-lactamase by combinatorial scanning mutagenesis. Protein Sci 12(8):1633–1645. https://doi.org/10.1110/ps.0302903

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif