Diagnostic informativeness of markers of bone-tissue metabolism and bone resorption in cows with osteodystrophy

Keywords: blood serum; macroelements; microelements; citric acid; total glycosaminoglycans; chondroitin sulfates; sialoglycoproteins, osteocalcin.

Abstract Osteodystrophy is caused by polyetiological factors, the main being disturbance of metabolism of macroelements and D and A vitamins. The disease continues to impose great economic losses on animal husbandry, reduces cattle productivity, and hinders effective work in this sphere. To study the pathogenesis and early diagnostics of bovine osteodystrophy, we examined the markers of metabolism of the connective tissue: macro- and microelements, general glycosaminoglycans and their fractions, chondroitin sulfate, sialoglycoproteins, oxoproline, citric acid, and osteocalcin. In the cows with subclinical course of osteodystrophy, the content of total calcium was decreased by 18.9% and such of phosphorus by 5.7%. In 95% of the clinically ill animals, we diagnosed hypocalcemia, combined with hypophosphatemia, in 35.0% of the cows. In blood serum of the cows with subclinical course of osteodystrophy, we found decrease in the concentration of citric acid down to 157.7 ± 2.1 mmol/L, in the clinically ill – 146.8 ± 1.2 mmol/L and osteocalcin – to 1.12 ± 0.04 and 0.72 ± 0.04 ng/mL, respectively. We determined increases in concentrations of chondroitin sulfates, sialoglycoproteins, total glycosaminoglycans and their fractions: chondroitin-6-sulfate, chondroitine-4-sulfate, keratan- and heparin- and dermatan sulfates, and heparine. The most informative criteria for diagnostics of subclinical course of osteodystrophy were citric acid, total glycosaminoglycans and their first and third fractions, chondroitin sulfates and sialoglycoproteins, because they were above the physiological limits in 100% of the cows with subclinical course of the disease, whereas in the clinically healthy animals, osteocalcin decreased in 60 and 100% of the cases, respectively.

References

Allen, V. G., Fontenot, J. P., & Rahnema, S. H. (1991). Influence of aluminum-citrate and citric acid on tissue mineral composition in wether sheep. Journal of Animal Science, 69(2), 792–800.
Allen, V. G., Horn, F. P., & Fontenot, J. P. (1986). Influence of ingestion of aluminum, citric acid and soil on mineral metabolism of lactating beef cows. Journal of Animal Science, 62(5), 1396–1403.
Blumenkrantz, N., & Asboe-Hansen, G. (1973). A quick and specific assay for hydroxyproline. Analytical Biochemistry, 55(1), 288–291.
Čepelak, I., & Čvorišćec, D. (2009). Biochemical markers of bone remodeling – review. Biochemia Medica, 19(1), 17–35.
Falkowski, J. F., & Aherne, F. X. (1984). Fumaric and citric acid as feed additives in starter pig nutrition. Journal of Animal Science, 58(4), 935–938.
Gold, E. W. (1979). A simple spectrophotometric method for estimating glycosaminoglycan concentration. Analytical Biochemistry, 99(1), 183–188.
Gorres, K. L., & Raines, R. T. (2010). Prolyl 4-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology, 45(2), 106–124.
Gutyj, B., Nazaruk, N., Levkivska, N., Shcherbatyj, A., Sobolev, A., Vavrysevych, J., Hachak, Y., Bilyk, O., Vishchur, V., & Guta, Z. (2017). The influence of nitrate and cadmium load on protein and nitric metabolism in young cattle. Ukrainian Journal of Ecology, 7(2), 9–13.
Gutyj, B., Stybel, V., Darmohray, L., Lavryshyn, Y., Turko, I., Hachak, Y., Shcherbatyy, A., Bushueva, I., Parchenko, V., Kaplaushenko, A., & Krushelnytska, O. (2017). Prooxidant-antioxidant balance in the organism of bulls (young cattle) after using cadmium load. Ukrainian Journal of Ecology, 7(4), 589–596.
Jourdian, W., Lawrence, D., & Roseman, S. (1971). A periodate-resorpcion method for the quantitative estimation of free sialic acids and their glycosides. The Journal of Biological Chemistry, 246(2), 430–435.
Kartashov, M. I., Borovkov, S. B., & Kibkalo, D. V. (2005). Kliniko-biokhimichni aspekty diahnostyky osteodystrofii u koriv [Clinical and biochemical aspects of diagnosis of osteodystrophy in cows]. Visnyk Bilotserkivskoho Derzhavnoho Ahrarnoho Universytetu, 33, 69–75 (in Ukrainian).
Kartashov, M. I., Tymoshenko, O. P., & Kibkalo, D. V. (2010). Veterynarna klinichna biokhimiia [Veterinary clinical biochemistry]. Espada, Kharkiv (in Ukrainian).
Kibkalo, D. V. (2008). Perspektyvy zastosuvannia biokhimichnykh pokaznykiv stanu spoluchnoi tkanyny v diahnostytsi vnutrishnikh neinfektsiinykh khvorob tvaryn [Prospects for the use of biochemical indicators of the state of connective tissue in the diagnosis of internal non-infectious diseases of animals]. Visnyk Bilotserkivskoho Derzhavnoho Ahrarnoho Universytetu, 56, 75–78 (in Ukrainian).
Kozii, V. I., & Kozii, N. V. (2011). Dobrobut tvaryn yak osnova preventyvnoji veterynarnoji medytsyny [Animal welfare as the basis of preventive veterinary medicine]. Naukovyj Visnyk Veterynarnoji Medytsyny, 87, 65–68 (in Ukrainian).
Levchenko, V. I., Sakhniuk, V. V., & Chub, O. V. (2010). Poshyrennia, etiolohija, osoblyvosti perebihu ta diahnostyky mnozhynnoji vnutrishnioji patolohiji u vysokoproduktyvnykh koriv [Common, etiology, features of the course and diagnostics of multiple internal pathologies in high-yielding cows]. Visnyk Bilotserkivskoho Derzhavnoho Ahrarnoho Universytetu, 56, 97–102 (in Ukrainian).
Levchenko, V. I., Vovkotrub, N. V., & Tyshkivska, N. V. (2011). Doslidzhennia moloka koriv yak nevidjemna skladova kompleksnoji diahnostyky ta profilaktyky “khvorob vysokoji produktyvnosti” [Studies of cow's milk as an integral component of complex diagnostics and prevention of “diseases of high productivity”]. Naukovyj Visnyk Veterynarnoji Medytsyny, 87, 86–92.
Liesegang, A., Eicher, R., Sassi, M. L., Risteli, J., Riond, J. L., & Wanner, M. (2000). Affiliations expand the course of selected bone resorption marker concentrations in response to short-term hypocalcemia experimentally induced with disodium EDTA infusions in dairy cows. Journal of Veterinary Medicine Series A, 47(8), 477–487.
Martín, M. J., Martín-Sosa, S., García-Pardo, L. A., & Hueso, P. (2001). Distribution of bovine milk sialo glycoconjugates during lactation. Journal of Dairy Science, 84(5), 995–1000.
Moreira, V. R., Zeringue, L. K., Williams, C. C., Leonardi, C., & McCormick, M. E. (2009). Influence of calcium and phosphorus feeding on markers of bone metabolism in transition cows. Journal of Dairy Science, 92(10), 5189–5198.
Morozenko, D. V., & Leontieva, F. S. (2016). Metody doslidzhennia markeriv metabolizmu spoluchnoji tkanyny u suchasnij klinichnij ta eksperymentalnij medytsyni [Methods of researching markers of connective tissue metabolism in modern clinical and experimental medicine]. Young Scientist, 29, 168–172 (in Ukrainian).
Mylostyvyi, R., Lesnovskay, O., Karlova, L., Khmeleva, O., Кalinichenko, O., Orishchuk, O., Tsap, S., Begma, N., Cherniy, N., Gutyj, B., & Izhboldina, O. (2021). Brown Swiss cows are more heat resistant than Holstein cows under hot summer conditions of the continental climate of Ukraine. Journal of Animal Behaviour and Biometeorology, 9(4), 2134.
Mylostyvyi, R., Sejian, V., Izhboldina, O., Kalinichenko, O., Karlova, L., Lesnovskay, O., Begma, N., Marenkov, O., Lykhach, V., Midyk, S., Cherniy, N., Gutyj, B., & Hoffmann, G. (2021). Changes in the spectrum of free fatty acids in blood serum of dairy cows during a prolonged summer heat wave. Animals, 11(12), 3391.
Oshima, M., & Fuse, H. (1981). Citric acid concentration in subclinical mastitic milk. Journal of Dairy Research, 48(3), 387–392.
Sakhniuk, V. V., Levchenko, V. I., & Chub, O. V. (2015). Profilaktyka mnozhynnoji vnutrishnioji patolohiji u vysokoproduktyvnykh koriv [Prevention of multiple internal pathology in high-yielding cows]. Naukovyj Visnyk Veterynarnoji Medytsyny, 118, 30–37 (in Ukrainian).
Shiqemura, Y., Kubomura, D., Sato, Y., & Sato, K. (2014). Dose-dependent changes in the levels of free and peptide forms of hydroxyproline in human plasma after collagen hydrolysate ingestion. Food Chemistry, 159(15), 328–332.
Slivinska, L. G., Shcherbatyy, A. R., Lukashchuk, B. O., Zinko, H. O., Gutyj, B. V., Lychuk, M. G., Chernushkin, B. O., Leno, M. I., Prystupa, O. I., Leskiv, K. Y., Slepokura, O. I., Sobolev, O. I., Shkromada, O. I., Kysterna, O. S., & Usiienko, O. V. (2019). Correction of indicators of erythrocytopoesis and microelement blood levels in cows under conditions of technogenic pollution. Ukrainian Journal of Ecology, 9(2), 127–135.
Slivinska, L. G., Vlizlo, V. V., Shcherbatyy, A. R., Lukashchuk, B. O., Gutyj, B. V., Drach, M. P., Lychuk, M. G., Maksymovych, I. A., Leno, M. I., Rusyn, V. I., Chernushkin, B. O., Fedorovych, V. L., Zinko, H. O., Prystupa, O. I., & Yaremchuk, V. Y. (2021). Influence of heavy metals on metabolic processes in cows. Ukrainian Journal of Ecology, 11(2), 284–291.
Slivinska, L., Demydjuk, S., Shcherbatyy, А., Fedorovich, V., & Tyndyk, I. (2017). Etiology and clinical biochemical parameters of blood for nutritional osteodystrophy cows. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Series: Veterinary Sciences, 19(73), 79–83.
Slivinska, L., Fedorovych, V., Gutyj, B., Lychuk, M., Shcherbatyy, A., Gudyma, T., Chernushkin, B., & Fedorovych, N. (2018). The occurrence of osteodystrophy in cows with chronic micronutrients deficiency. Ukrainian Journal of Ecology, 8(2), 24–32.
Sobolev, O., Gutyj, B., Petryshak, R., Pivtorak, J., Kovalskyi, Y., Naumyuk, A., Petryshak, O., Semchuk, I., Mateusz, V., Shcherbatyy, A., & Semeniv, B. (2019). Biological role of selenium in the organism of animals and humans. Ukrainian Journal of Ecology, 8(1), 654–665.
Stepanenko, H. O. (2013). Vykorystannia hlikozaminohlikaniv u diahnostytsi ta likuvanni metabolichnykh osteopatiji u reptylij [The use of glycosaminoglycans in the diagnosis and treatment of metabolic osteopathy in reptiles]. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Series: Veterinary Sciences, 15(57), 305–311 (in Ukrainian).
Taylor, M. S., Knowlton, K. F., McGilliard, M. L., Seymour, W. M., & Herbein, J. H. (2008). Blood mineral, hormone, and osteocalcin responses of multiparous jersey cows to an oral dose of 25-hydroxyvitamin D3 or vitamin D3 before parturition. Journal of Dairy Science, 91(6), 2408–2416.
Uhl, E. W. (2018). The pathology of vitamin D deficiency in domesticated animals: An evolutionary and comparative overview. International Journal of Paleopathology, 23, 100–109.
Vlizlo, V. V., Colohub, L. I., Yanovych, V. H., Antoniak, H. L., & Yanovych, D. O. (2006). Biokhimichni osnovy normuvannia mineralnoho zhyvlennia velykoji rohatoji khudoby. 2. Mikroelementy [Biochemical bases of rationing of mineral nutrition of cattle. 2. Microelements]. Biolohija Tvaryn, 8, 41–62 (in Ukrainian).
Vlizlo, V. V., Fedoruk, R. S., & Ratych, I. B. (2012). Laboratorni metody doslidzhen’ u biolohiji, tvarynnytstvi ta veterynarnij medytsyni [Laboratory methods up to biology, animal husbandry and veterinary medicine]. Lviv, Spolom (in Ukrainian).
Vlizlo, V. V., Prystupa, O. I., Slivinska, L. G., Lukashchuk, B. O., Hu, S., Gutyj, B. V., Maksymovych, I. A., Shcherbatyy, A. R., Lychuk, M. G., Chernushkin, B. O., Leno, M. I., Rusyn, V. I., Drach, M. P., Fedorovych, V. L., Zinko, H. O., & Yaremchuk, V. Y. (2021). Functional state of the liver in cows with fatty liver disease. Ukrainian Journal of Ecology, 11(3), 168–173.
Wilkens, M. R., Cohrs, I., Lifschitz, A. L., Fraser, D. R., Olszewski, K., Schröder, B., & Breves, G. (2013). Is the metabolism of 25-hydroxyvitamin D3 age-dependent in dairy cows? Journal of Steroid Biochemistry and Molecular Biology, 136, 44–46.
Zaitseva, O. V., Shandrenko, S. G., & Veliky, M. M. (2015). Biochemical markers of bone collagen type I metabolism. Ukrainian Biochemical Journal, 87(1), 21–32.

留言 (0)

沒有登入
gif