Morphological structure of enamel caries in the dynamic process of demineralization and remineralization

Keywords: tooth enamel caries; white spots; tooth demineralization diagnostics; violation of mineralization; re-mineralizing preparations; nanodispersed hydroxyapatite; SEM and caries morphology.

Abstract According to modern ideas, the carious process at the white spot stage is reversible, so all the attention of scientists is directed to the development of means to restore the crystal lattice of tooth enamel. The purpose of the study is to evaluate morphological changes in caries at the white spot stage and the process of structural remineralization of the carious lesion area. Clinically active initial lesions were detected visually, using optical magnification and positive staining. Structural changes in enamel were studied by scanning electron microscopy of surface impressions obtained from the surface of demineralized enamel. Remineralizing therapy was carried out by applying ApaCare restorative gel (Germany) with nanodispersed highly active hydroxyapatite. Determination of the intensity of dental caries by the DMFT and dmft index showed 9.04 ± 0.40 points on average in the group of subjects, children with code 1 according to the ICDAS index made up 50.8%. Colour reactions showed 7.80 ± 0.21 points on average in the group. SEM visualized characteristic structural changes in the area of the carious spot – an increase in the porosity of the enamel surface with exposure of the fine crystalline structure and destruction of interprismatic fibrillar structures. When using a remineralizing agent, a roller-like deposition of an amorphous remineralizing substance is characteristic, and at the final stage, a smooth enamel surface with a fine crystal lattice is restored. The restoration of the prismatic structure of the enamel occurs due to the mineralization of the preserved fibrillar walls in the interprismatic space. Clinically, at this stage, the enamel visually restores its original shine, smoothness, and colour. In 81.8% of cases, the dye did not penetrate the previously demineralized enamel. The high level of non-cavitated active caries lesions can be largely controlled by the use of remineralizing agents. Further research involves studying the quantitative characteristics of the processes of de- and remineralization of tooth enamel.

References

Abdelrahman, M., Hsu, K. L., Melo, M. A., Dhar, V., & Tinanoff, N. (2021). Mapping evidence on early childhood caries prevalence: Complexity of worldwide data reporting. Journal of Clinical Pediatric Dentistry, 14(1), 1–7.
Abou Neel, E. A., Aljabo, A., Strange, A., Ibrahim, S., Coathup, M., Young, A. M., Bozec, L., & Mudera, V. (2016). Demineralization-remineralization dynamics in teeth and bone. International Journal of Nanomedicine, 19(11), 4743–4763.
Alghilan, M. A., Lippert, F., Platt, J. A., Eckert, G. J., González-Cabezas, C., Fried, D., & Hara, A. T. (2019). Impact of surface micromorphology and demineralization severity on enamel loss measurements by cross-polarization optical coherence tomography. Journal of Dentistry, 81, 52–58.
Amaechi, B. T. (2015). Remineralization therapies for initial caries lesions. Current Oral Health Reports, 2, 95–101.
Anil, A., Ibraheem, W. I., Meshni, A. A., Preethanath, R. S., & Anil, S. (2022). Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: A scoping review. International Journal of Environmental Research and Public Health, 19, 5629.
Anil, S., & Anand, P. S. (2017). Early childhood caries: Prevalence, risk factors, and prevention. Frontiers in Pediatrics, 18(5), 157.
Banihani, A., Santamaría, R. M., Hu, S., Maden, M., & Albadri, S. (2022). Minimal intervention dentistry for managing carious lesions into dentine in primary teeth: An umbrella review. European Archives of Paediatric Dentistry, 23(5), 667–693.
Bottner, A., He, R. Y., Sarbu, A., Nainar, S. M. H., Dufour, D., Gong, S. G., & Lévesque, C. M. (2020). Streptococcus mutans isolated from children with severe-early childhood caries form higher levels of persisters. Archives of Oral Biology, 110, 104601.
Brunton, P. A., Davies, R. P., Burke, J. L., Smith, A., Aggeli, A., Brookes, S. J., & Kirkham, J. (2013). Treatment of early caries lesions using biomimetic self-assembling peptides – a clinical safety trial. British Dental Journal, 215(4), e6.
Cagetti, M. G., Mastroberardino, S., Milia, E., Cocco, F., Lingström, P., & Campus, G. (2013). The use of probiotic strains in caries prevention: A systematic review. Nutrients, 5, 2530–2550.
Cheng, L., Zhang, K., Weir, M. D., Melo, M. A., Zhou, X., & Xu, H. H. (2015). Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine, 10(4), 627–641.
Crescente, C. L., de Sousa, E. T., Lima-Holanda, A. T., Steiner-Oliveira, C., & Nobre-Dos-Santos, M. (2022). Biofilm accumulation and sucrose rinse modulate calcium and fluoride bioavailability in the saliva of children with early childhood caries. Scientific Reports, 12(1), 10283.
Desoutter, A., Felbacq, D., Gergely, C., Varga, B., Bonnet, L., Etienne, P., Vialla, R., Cuisinier, F., Salehi, H., Rousseau, E., & Rufflé, B. (2023). Properties of dentin, enamel and their junction, studied with Brillouin scattering and compared to Raman microscopy. Archives of Oral Biology, 152, 105733.
Dhanya, K., Chandra, P., Anandakrishna, L., & Karuveettil, V. (2021). A comparison of NovaMin™ and casein phosphopeptide-amorphous calcium phosphate fluoride on enamel remineralization – an in vitro study using scanning electron microscope and DIAGNOdent®. Contemporary Clinical Dentistry, 12(3), 301–307.
Díaz-Garrido, N., Lozano, C. P., Kreth, J., & Giacaman, R. A. (2020). Competition and caries on enamel of a dual-species biofilm model with Streptococcus mutans and Streptococcus sanguinis. Applied and Environmental Microbiology, 86(21), e01262-20.
Dorri, M., Dunne, S. M., Walsh, T., & Schwendicke, F. (2015). Micro-invasive interventions for managing proximal dental decay in primary and permanent teeth. Cochrane Database of Systematic Reviews, 11, CD010431.
Erdem, V., Yıldız, M., & Erdem, T. (2013). The evaluation of saliva flow rate, pH, buffer capacity, microbiological content and indice of decayed, missing and filled teeth in Behçet’s patients. Balkan Medical Journal, 30(2), 211–214.
Farooq, I., & Bugshan, A. (2020). The role of salivary contents and modern technologies in the remineralization of dental enamel: A narrative review. F1000Research, 9, 171.
Farooqi, F. A., Khabeer, A., Moheet, I. A., Khan, S. Q., Farooq, I., & ArRejaie, A. S. (2015). Prevalence of dental caries in primary and permanent teeth and its relation with tooth brushing habits among schoolchildren in Eastern Saudi Arabia‬. Saudi Medical Journal, 36(6), 737–742.
Flynn, L. N., Julien, K., Noureldin, A., & Buschang, P. H. (2022). The efficacy of fluoride varnish vs a filled resin sealant for preventing white spot lesions during orthodontic treatment. The Angle Orthodontist, 92(2), 204–212.
Fontana, M., & Gonzalez-Cabezas, C. (2019). Evidence-based dentistry caries risk assessment and disease management. Dental Clinics of North America, 63(1), 119–128.
Garcia, B. A., Acosta, N. C., Tomar, S. L., Roesch, L. F. W., Lemos, J. A., Mugayar, L. R. F., & Abranches, J. (2021). Association of Candida albicans and Cbp+ Streptococcus mutans with early childhood caries recurrence. Journal of Scientific Reports, 11(1), 10802.
Giacaman, R. A., Muñoz-Sandoval, C., Neuhaus, K. W., Fontana, M., & Chalas, R. (2018). Evidence-based strategies for the minimally invasive treatment of carious lesions: Review of the literature. Advances in Clinical and Experimental Medicine, 27(7), 1009–1016.
Greenwall, L. (2013). White lesion eradication using resin infiltration. International Dentistry – African Edition, 3(4), 54–62.
Grohe, B., & Mittler, S. (2021). Advanced non-fluoride approaches to dental enamel remineralization: The next level in enamel repair management. Biomaterials and Biosystems, 4, 100029.
Gupta, N., Marya, C. M., Nagpal, R., Oberoi, S. S., & Dhingra, C. (2016). A review of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and enamel remineralization. Compendium of Continuing Education in Dentistry, 37(1), 36–39.
Han, S., Fan, Y., Zhou, Z., Tu, H., Li, D., Lv, X., Ding, L., & Zhang, L. (2017). Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model. Archives of Oral Biology, 73, 66–71.
Hasiuk, P., Gevkaliuk, N., Pynda, M., Vorobets, A., Dzetsiuk, T., Pudiak, V., & Smiianov, Y. (2021). Epidemiological indicators of dental morbidity of children as an indicators of adverse environmental. Wiadomosci Lekarskie, 74(5), 1069–1073.
Jafarzadeh, D., Rezapour, R., Abbasi, T., Sadegh Tabrizi, J., Zeinolabedini, M., Khalili, A., & Yousefi, M. (2022). The effectiveness of fluoride varnish and fissure sealant in elementary school children: A systematic review and meta-analysis. Iranian Journal of Public Health, 51(2), 266–277.
Kamina, T. V. (2013). Vybor remineraliziruyushchego preparata – vopros sereznyj [The choice of a remineralizing drug is a serious question]. Visnyk Problem Biolohii i Medytsyny, 4(1), 53–56 (in Russian).
Khoroushi, M., & Kachuie, M. (2017). Prevention and treatment of white spot lesions in orthodontic patients. Contemporary Clinical Dentistry, 8(1), 11–19.
Krois, J., Göstemeyer, G., Reda, S., & Schwendicke, F. (2018). Sealing or infiltrating proximal carious lesions. Journal of Dentistry, 74, 15–22.
Kumar, B., Kashyap, N., Avinash, A., Chevvuri, R., Sagar, M. K., & Shrikant, K. (2017). The composition, function and role of saliva in maintaining oral health: A review. International Journal of Contemporary Dental and Medical Reviews, 2017, ID011217.
Lacruz, R. S., Habelitz, S., Wright, J. T., Paine, M. L. (2017). Dental enamel formation and implications for oral health and disease. Physiological Reviews, 97(3), 939–993.
Lamba, G. S., Dufour, D., Nainar, S. M. H., Cioffi, I., Lévesque, C. M., & Gong, S.-G. (2020). Association of Streptococcus mutans collagen binding genes with severe childhood caries. Clinical Oral Investigations, 24(10), 3467–3475.
Liu, Y., Daniel, S. G., Kim, H. E., Koo, H., Korostoff, J., Teles, F., Bittinger, K., & Hwang, G. (2023). Addition of cariogenic pathogens to complex oral microflora drives significant changes in biofilm compositions and functionalities. Microbiome, 11(1), 123.
Mehta, R., Nandlal, B., & Prashanth, S. (2013). Comparative evaluation of remineralization potential of casein phosphopeptide-amorphous calcium phosphate and casein phosphopeptide-amorphous calcium phosphate fluoride on artificial enamel white spot lesion: An in vitro light fluorescence study. Indian Journal of Dental Research, 24, 681–689.
Monajem, S. (2009). The WHO’s action plan for oral health. International Journal of Dental Hygiene, 7(1), 71–73.
Pajor, K., Pajchel, L., & Kolmas, J. (2019). Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology – a review. Materials, 12(17), 2683.
Pedersen, A. M. L., Sørensen, C. E., Proctor, G. B., Carpenter, G. H., & Ekström, J. (2018). Salivary secretion in health and disease. Journal of Oral Rehabilitation, 45(9), 730–746.
Petersen, P. E., & Lennon, M. A. (2004). Effective use of fluorides for the prevention of dental caries in the 21st century: The WHO approach. Community Dentistry and Oral Epidemiology, 32(5), 319–321.
Pitts, N. B., & Ekstrand, K. R. (2013). ICDAS Foundation. International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS) – methods for staging of the caries process and enabling dentists to manage caries. Community Dentistry and Oral Epidemiology, 41(1), e41-e52.
Ramezani, J., Khaligh, M. R., Ansari, G., Yazdani, Y., & Mohammadi, S. (2021). Association of salivary physicochemical characteristics and peptide levels with dental caries in children. Journal of Indian Society of Pedodontics and Preventive Dentistry, 39(2), 189–195.
Rathnayake, N., Akerman, S., Klinge, B., Lundegren, N., Jansson, H., Tryselius, Y., Sorsa, T., & Gustafsson, A. (2013). Salivary biomarkers of oral health: A cross-sectional study. Journal of Clinical Periodontology, 40(2), 140–147.
Reema, S. D., Lahiri, P. K., & Roy, S. S. (2014). Review of casein phosphopeptides-amorphous calcium phosphate. Chinese Journal of Dental Research, 17, 7–14.
Rirattanapong, P., Vongsavan, K., Saengsirinavin, C., & Waidee, S. (2017). Enhancing remineralization of primary enamel lesions with fluoride dentifrice containing tricalcium phosphate. The Southeast Asian Journal of Tropical Medicine and Public Health, 48, 494–500.
Shen, P., Bagheri, R., Walker, G., Yuan, Y., Stanton, D., Reynolds, C., & Reynolds, E. C. (2015). Effect of calcium phosphate addition to fluoride containing dental varnishes on enamel demineralization. Australian Dental Journal, 61, 357–365.
Sivamaruthi, B. S., Kesika, P., & Chaiyasut, C. (2020). A review of the role of probiotic supplementation in dental caries. Probiotics and Antimicrobial Proteins, 12, 1300–1309.
Soares, R., De Ataide, I. N., Fernandes, M., & Lambor, R. (2017). Assessment of enamel remineralisation after treatment with four different remineralising agents: A scanning electron microscopy (SEM) study. Journal of Clinical and Diagnostic Research, 11(4), ZC136-ZC141.
Somasundaram, P., Vimala, N., & Mandke, L. G. (2013). Protective potential of casein phosphopeptide amorphous calcium phosphate containing paste on enamel surfaces. Journal Conservative Dentiststry, 16(2), 152–156.
Tsai, M. T., Wang, Y. L., Yeh, T. W., Lee, H.-C., Chen, W.-J., Ke, J.-L., & Lee, Y.-J. (2019). Early detection of enamel demineralization by optical coherence tomography. Scientific Reports, 9, 17154.
Uskoković, V. (2015). Amelogenin in enamel tissue engineering. Advances in Experimental Medicine and Biology, 881, 237–254.
Vanichvatana, S., & Auychai, P. (2013). Efficacy of two calcium phosphate pastes on the remineralization of artificial caries: A randomized controlled double-blind in situ study. International Journal of Oral Science, 5, 224–228.
Wagh, V. D. (2013). Propolis: A wonder bees product and its pharmacological potentials. Advances in Pharmacological Sciences, 2013, 308249.
Warreth, A. (2023). Dental caries and its management. Advances in Pharmacological Sciences, 3, 9365845.
Zhang, O. L., Niu, J. Y., Yin, I. X., Yu, O. Y., Mei, M. L., & Chu, C. H. (2023). Bioactive materials for caries management: A literature review. Dentistry Journal, 11(3), 59.

留言 (0)

沒有登入
gif