Research on the mechanism of the two-dimensional ultrasonic surface burnishing process to enhance the wear resistance for aluminum alloy

Ni Y, Fu L, Shen Z, Liu X C. Role of tool design on thermal cycling and mechanical properties of a high-speed micro friction stir welded 7075-T6 aluminum alloy. J Manuf Process 48: 145–153 (2019)

Article  Google Scholar 

Zhang S, Zhang T, He Y T, Du X, Ma B L, Zhang T Y. Long-term atmospheric pre-corrosion fatigue properties of epoxy primer-coated 7075-T6 aluminum alloy structures. Int J Fatigue 129: 105225 (2019)

Article  Google Scholar 

Barooah R K, Arif A F M, Paiva J M, Oomen-Hurst S, Veldhuis S C. Wear of form taps in threading of Al–Si alloy parts: Mechanisms and measurements. Wear 442–443: 203153 (2020)

Article  Google Scholar 

Fuentes R, Ono R, Nakajima N, Nishizawa H, Siswanto J, Aziz N, Sriwigati, Sofian H O, Miranda T, Pawlik A. Technological and behavioural complexity in expedient industries: The importance of use-wear analysis for understanding flake assemblages. J Archaeol Sci 112: 105031 (2019)

Article  Google Scholar 

Chen Q P, Xie Q S, Yuan Q N, Huang H S, Li Y T. Research on a real-time monitoring method for the wear state of a tool based on a convolutional bidirectional LSTM model. Symmetry 11(10): 1233 (2019)

Article  Google Scholar 

Sun H, Li A H, Zhou Y H, Liao X L, Ge D J. Dry wear characteristics of machined ZL109 aluminum–silicon alloy surface under unidirectional and reciprocating rolling-contact friction. Surf Topogr Metrol Prop 8(1): 015001 (2020)

Article  Google Scholar 

Xie S Y, Li R D, Yuan T C, Chen C, Zhou K C, Song B, Shi Y S. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni–Cr–Fe coating with nanostructure. Opt Laser Technol 99: 374–381 (2018)

Article  Google Scholar 

Zhao X H, Zhao Y Q, Xu D S, Hu C H. Effect of gradient nanostructure on plasma sulfonitrocarburizing of 42MnCr52 steel. Tribol Trans 63(1): 133–143 (2020)

Article  Google Scholar 

Ao N, Liu D X, Xu X C, Zhang X H, Liu D. Gradient nanostructure evolution and phase transformation of α phase in Ti–6Al–4V alloy induced by ultrasonic surface rolling process. Mat Sci Eng A-Struct 742: 820–834 (2019)

Article  Google Scholar 

Wang X, Li Y S, Zhang Q, Zhao Y H, Zhu Y T. Gradient structured copper by rotationally accelerated shot peening. J Mater Sci Technol 33(7): 758–761 (2017)

Article  Google Scholar 

Deng S Q, Godfrey A, Liu W, Hansen N. A gradient nanostructure generated in pure copper by platen friction sliding deformation. Scripta Mater 117: 41–45 (2016)

Article  Google Scholar 

Ren Z J, Lai F Q, Qu S G, Zhang Y L, Li X Q, Yang C. Effect of ultrasonic surface rolling on surface layer properties and fretting wear properties of titanium alloy Ti5Al4Mo6V2Nb1Fe. Surf Coat Technol 389: 125612 (2020)

Article  Google Scholar 

Liu X, Zheng Y H, Guo Y L, Kong H J. Study on the rolling friction and wear properties of surface densified powder metallurgy Fe–2Cu–0.6C material. Surf Topogr Metrol Prop 8(1): 015009 (2020)

Article  Google Scholar 

Liu X, Xiao Z Y, Guan H J, Zhang W, Li F L. Friction and wear behaviours of surface densified powder metallurgy Fe–2Cu–0.6C material. Powder Metall 59(5): 329–334 (2016)

Article  Google Scholar 

Ma C, Andani M T, Qin H F, Moghaddam N S, Ibrahim H, Jahadakbar A, Amerinatanzi A, Ren Z C, Zhang H, Doll G L, et al. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J Mater Process Tech 249: 433–440 (2017)

Article  Google Scholar 

Zhou Z Y, Zheng Q Y, Ding C, Yan J Y, Peng G J, Piao Z Y. Research on the promotion mechanism of surface burnishing process by two-dimensional ultrasonic vibration. J Mater Res Technol 13: 1068–1082 (2021)

Article  Google Scholar 

Zhou Z Y, Zheng Q Y, Ding C, Yu G L, Peng G J, Piao Z Y. Investigation of two-dimensional ultrasonic surface burnishing process on 7075-T6 aluminum. Chin J Mech Eng 34(1): 19 (2021)

Article  Google Scholar 

Niessen F, Nyyssönen T, Gazder A A, Hielscher R. Parent grain reconstruction from partially or fully transformed microstructures in MTEX. J Appl Crystallogr 55(1): 180–194 (2022)

Article  Google Scholar 

Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69(14): 144113 (2004)

Article  Google Scholar 

Yu H L, Adams J B, Hector L G. Molecular dynamics simulation of high-speed nanoindentation. Model Simul Mater Sc 10(3): 319–329 (2002)

Article  Google Scholar 

Han F B, Roters F, Raabe D. Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver. Int J Plasticity 125: 97–117 (2020)

Article  Google Scholar 

Helm D, Butz A, Raabe D, Gumbsch P. Microstructure-based description of the deformation of metals: Theory and application. JOM 63(4): 26–33 (2011)

Article  Google Scholar 

Lu X C, Zhang X, Shi M X, Roters F, Kang G Z, Raabe D. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. Int J Plasticity 113: 52–73 (2019)

Article  Google Scholar 

Roters F, Diehl M, Shanthraj P, Eisenlohr P, Reuber C, Wong S L, Maiti T, Ebrahimi A, Hochrainer T, Fabritius H O, et al. DAMASK—The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comp Mater Sci 158: 420–478 (2019)

Article  Google Scholar 

Roters F. Advanced material models for the crystal plasticity finite element method: Development of a general CPFEM framework. Postdoctoral Thesis. Germany: RWTH Aachen University, 2011.

Google Scholar 

Thomason P F. Ductile spallation fracture and the mechanics of void growth and coalescence under shock-loading conditions. Acta Mater 47(13): 3633–3646 (1999)

Article  Google Scholar 

Rupert T J, Schuh C A. Sliding wear of nanocrystalline Ni–W: Structural evolution and the apparent breakdown of Archard scaling. Acta Mater 58(12): 4137–4148 (2010)

Article  Google Scholar 

Argibay N, Furnish T A, Boyce B L, Clark B G, Chandross M. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior. Scripta Mater 123: 26–29 (2016)

Article  Google Scholar 

Padilla H A II, Boyce B L, Battaile C C, Prasad S V. Frictional performance and near-surface evolution of nanocrystalline Ni–Fe as governed by contact stress and sliding velocity. Wear 297(1–2): 860–871 (2013)

Article  Google Scholar 

Prasad S V, Battaile C C, Kotula P G. Friction transitions in nanocrystalline nickel. Scripta Mater 64(8): 729–732 (2011)

Article  Google Scholar 

Milman Y V, Golubenko A A, Dub S N. Indentation size effect in nanohardness. Acta Mater 59(20): 7480–7487 (2011)

Article  Google Scholar 

Bao Y W, Wang W, Zhou Y C. Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater 52(18): 5397–5404 (2004)

Article  Google Scholar 

Musil J. Flexible hard nanocomposite coatings. RSC Adv 5(74): 60482–60495 (2015)

Article  Google Scholar 

Musil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf Coat Tech 207: 50–65 (2012)

Article  MathSciNet  Google Scholar 

Yu C, Yang R, Feng Y H, Huan Y, Peng G J, Zhang T H. Relationships between the work recovery ratio of indentation and plastic parameters for instrumented spherical indentation. MRS Commun 5(1): 89–94 (2015)

Article  Google Scholar 

Leyland A, Matthews A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 246(1–2): 1–11 (2000)

Article  Google Scholar 

Pintaude G. Introduction of the ratio of the hardness to the reduced elastic modulus for abrasion. In: Tribology— Fundamentals and Advancements. Gegner J, Ed. London, UK: IntechOpen, 2013: 217–230.

Google Scholar 

留言 (0)

沒有登入
gif