Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–13.
Article CAS PubMed PubMed Central Google Scholar
Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Ímmunosenescence and inflamm-aging as two sides of the same coin: friends or Foes?”. Front Immunol. 1960;2018:8.
De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflamm-aging and lifelong antigenic load as major determinants of aging rate and longevity. FEBS Lett. 2005;579:2035–9.
Bucci L., Ostan R., Capri S., et al. ``Inflamm-aging: handbook on immunosenesce – basic understanding and clinical applications.” Springer Science+Business Media B.V. 2009; 839–918.
Goldman DP, Cutler D, Rowe JW, et al. Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff. 2013;32(10):1698–705.
Voisin S, Jasques M, Landen S, Harvey NR, Haupt LM, Griffiths LR, Gancheva S, Ouni M, Jahnert M, Ashton KJ, Coffey VG, Thompson J-L M, Doering T M, Gabory A, Junien C, Caiazzo R, Verkindt H, Raverdy V, Pattou F, Froguel P, Craig JM, Blocquiaux S, Thomis M, Sharples A P, Schurmann A, Roden M, Horvath S, Eynon N. Meta-analysis of genome-wide DNA methylation and integrative omics of age in human skeletal muscle. J Cachexia Sarcopenia Muscle. 2021;12:1064–78.
Article PubMed PubMed Central Google Scholar
Zykovich A, Hubbard A, Flynn JM, Tarnopolsky M, Fraga MF, Kerksick C, Ogborn D, MacNeil L, Mooney SD, Melov S. Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell. 2014;13:360–6.
Article CAS PubMed Google Scholar
He L, Khanal P, Morse CI, Williams A, Thomis M. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295–306.
Article PubMed PubMed Central Google Scholar
Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013;14(9):R102.
Article PubMed PubMed Central Google Scholar
Gensous N, Bacalini MG, Pirazzini C, Marasco E, Giuliani C, Ravaioli F, Mengozzi G, Bertarelli C, Palmas MG, Franseschi C, Garagnani P. The epigenetic landscape of age-related diseases: the geroscience perspective. Biogerontology. 2018;18(4):549–59.
Mangelinck A, Mann C. DNA methylation and histone variants in aging and cancer. Int Rev Cell Mol Biol. 2021;364:1–110.
Article CAS PubMed Google Scholar
Martinez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017;216:875–87.
Article CAS PubMed PubMed Central Google Scholar
Muraki K, Han L, Miller D, Murnane JP. Processing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks. Nucleic Acids Res. 2015;43:7911–30.
Article CAS PubMed PubMed Central Google Scholar
Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11:161–76.
Article CAS PubMed Google Scholar
Kannengiesser C, Borie R, Renzoni EA. Pulmonary fibrosis: Genetic analysis of telomere-related genes, telomere length measurement-or both? Respirology. 2019;24:97–8.
Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev. 2017;164:61–6.
Article CAS PubMed Google Scholar
Bernabeu-Wittel M, González-Molina Á, Fernández-Ojeda R, Díez-Manglano J, Salgado F, Soto-Martín M, et al. Impact of sarcopenia and frailty in a multicenter cohort of polypathological patients. J Clin Med. 2019;8(4):535.
Article PubMed PubMed Central Google Scholar
Fouad M, Salem S, Hussein M, Zekri A, Hafez H, Desouky E, Shourman S, Impact of Global DNA Methylation in Treatment Outcome of Colorectal Cancer Patients, Frontiers Pharmacology, 2018; 9.
Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone. 2017;105:276–86.
Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y. Sarcopenia. Jt Bone Spine. 2019;86:309–14.
Wou F, Conroy S. The frailty syndrome. Medicine. 2013;41:13–5.
Davies B, García F, Ara I, Artalejo FR, Rodriguez-Mañas L, Walter S. Relationship between sarcopenia and frailty in the toledo study of healthy aging: A population based cross-sectional study. J Am Med Dir Assoc. 2018;19:282–6.
Article CAS PubMed Google Scholar
Fried LP, Tangen CM, Walston J, Newman AB, Hirsh C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.
Article CAS PubMed Google Scholar
Fontana L, Kennedy BK, Longo VD, Seals D, Melov S. Medical research: treat aging. Nature. 2014;7510:405–7.
Rae MJ, Butler RN, Campisi J, et al. The demographic and biomedical case for late-life interventions in aging. Sci Transl Med. 2010;2(40):40cm21.
Article PubMed PubMed Central Google Scholar
Turner DC, Seaborne RA, Sharples AP. „Comparative transcriptome and methylome analysis in human skeletal muscle anabolism, hypertrophy and epigenetic memory. Sci Rep. 2019;9:4251.
Article PubMed PubMed Central Google Scholar
Gensous N, Bacalini MG, Franceschi C, Meskers CGM, Maier AB, Garagnani P. Age-Related DNA Methylation Changes: Potential Impact on Skeletal Muscle Aging in Humans. Front Physiol. 2019;2(10):996.
Bernabeu-Wittel M, Gómez-Díaz R, González-Molina Á, Vidal-Serrano S, Díez-Manglano J, Salgado F, et al. Oxidative Stress, Telomere Shortening, and Apoptosis Associated to Sarcopenia and Frailty in Patients with Multimorbidity. J Clin Med. 2020;9(8):2669.
Article CAS PubMed PubMed Central Google Scholar
Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci USA. 2020;117:9483–9.
Article CAS PubMed PubMed Central Google Scholar
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.
Article CAS PubMed PubMed Central Google Scholar
Cederholm T. Overlaps between frailty and sarcopenia definitions. Nestle Nutr Inst Workshop Ser. 2015;83:65–9.
H. Sies Oxidative Stress: Introductory remarks., Oxidative Stress Acad. Press (1985): 1–8.
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases Indian. J Clin Biochem. 2015;30:11–26.
G. Bjelakovic, D. Nikolova, L.L. Gluud, R.G. Simonetti, C. Gluud Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases Cochrane Database Syst. Rev. (2012); CD007176.
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Caciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.
Article CAS PubMed PubMed Central Google Scholar
Belenguer-Varea Á., Tarazona-Santabalbina F.J., Avellana-Zaragoza J.A., Martínez-Reig M., Mas-Bargues C., Inglés M. „Oxidative stress and exceptional human longevity: Systematic review.“ Free Radic Biol Med., 2019, 51–63.
Comments (0)