Metabolomic biomarkers of habitual B vitamin intakes unveil novel differentially methylated positions in the human epigenome

Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci. 2016;1363:91–8.

Article  CAS  PubMed  Google Scholar 

Serefidou M, Venkatasubramani AV, Imhof A. The impact of one carbon metabolism on histone methylation. Front Genet. 2019;10:1–7.

Article  Google Scholar 

Zhang N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr. 2015;1:144–51. https://doi.org/10.1016/j.aninu.2015.09.002.

Article  PubMed  PubMed Central  Google Scholar 

An Y, Feng L, Zhang X, Wang Y, Wang Y, Tao L, et al. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin Epigenetics. 2019;11:1–19.

Article  CAS  Google Scholar 

Barroso M, Handy DE, Castro R. The link between hyperhomocysteinemia and hypomethylation. J Inborn Errors Metab Screen. 2017;5:232640981769899.

Article  Google Scholar 

Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:1–10.

Article  Google Scholar 

Chamberlain JA, Dugué PA, Bassett JK, Hodge AM, Brinkman MT, Joo JHE, et al. Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood. Am J Clin Nutr. 2018;108:611–21.

Article  PubMed  Google Scholar 

Mandaviya PR, Joehanes R, Brody J, Castillo-fernandez JE, Dekkers KF, Do AN, et al. Association of dietary folate and vitamin B-12 intake with genome-wide DNA methylation in blood: a large-scale epigenome-wide association analysis in 5841 individuals. Am J Clin Nutr. 2019;110:437–50.

Article  PubMed  PubMed Central  Google Scholar 

Dugué PA, Chamberlain JA, Bassett JK, Hodge AM, Brinkman MT, Joo JHE, et al. Overall lack of replication of associations between dietary intake of folate and vitamin B-12 and DNA methylation in peripheral blood. Am J Clin Nutr. 2020;111:228–30.

Article  PubMed  Google Scholar 

Joubert BR, Den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016;7:10577.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hafizah YN, Ang LC, Yap F, Najwa WN, Cheah WL, Ruzita AT, et al. Validity and reliability of a food frequency questionnaire (FFQ) to assess dietary intake of preschool children. Int J Environ Res Public Health. 2019;16:4722.

Article  Google Scholar 

Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, et al. Addressing current criticism regarding the value of self-report dietary data. J Nutr. 2015;145:2639–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shim J-S, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health. 2014;36: e2014009.

Article  PubMed  PubMed Central  Google Scholar 

Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int. 2015. https://doi.org/10.1155/2015/354671.

Article  PubMed  PubMed Central  Google Scholar 

Guasch-Ferre M, Bhupathiraju SN, Hu FB. Use of metabolomics in improving assessment of dietary intake. Clin Chem. 2018;64:82–98.

Article  CAS  PubMed  Google Scholar 

Posma JM, Garcia-Perez I, Frost G, Aljuraiban GS, Chan Q, Van Horn L, et al. Nutriome–metabolome relationships provide insights into dietary intake and metabolism. Nat Food. 2020;1:426–36. https://doi.org/10.1038/s43016-020-0093-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr. 2012;142:1009–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet. 2017;49:131–8.

Article  CAS  PubMed  Google Scholar 

Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. Front Nutr. 2019;6:1–12.

Article  Google Scholar 

Mascolo E, Vernì F. Vitamin B6 and diabetes: relationship and molecular mechanisms. Int J Mol Sci. 2020;21:3669.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hellmann H, Mooney S. Vitamin B6: A molecule for human health? Molecules. 2010;15:442–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyon P, Strippoli V, Fang B, Cimmino L. B vitamins and one-carbon metabolism: implications in human health and disease. Nutrients. 2020;12:1–24.

Article  Google Scholar 

Obeid R, Geisel J, Nix WA. 4-Pyridoxic acid/pyridoxine ratio in patients with type 2 diabetes is related to global cardiovascular risk scores. Diagnostics. 2019;9:1–12.

Article  Google Scholar 

Ulenad PM, Ulvik A, Rios-Avila R, Gregory JA. Direct and functional biomarkers of vitamin B6 status. Annu Rev Nutr. 2018;35:33–70.

Google Scholar 

Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in wistar rats. PLoS ONE. 2011;6:1–7.

Article  Google Scholar 

Iglesia I, Huybrechts I, González-Gross M, Mouratidou T, Santabárbara J, Chajès V, et al. Folate and Vitamin B12 concentrations are associated with plasma DHA and EPA fatty acids in European adolescents: the healthy lifestyle in Europe by nutrition in adolescence (HELENA) study. Br J Nutr. 2017;117:124–33.

Article  CAS  PubMed  Google Scholar 

de Soest APM, van de Rest O, Witkamp RF, Cederholm T, de Groot LCPGM. DHA status influences effects of B-vitamin supplementation on cognitive ageing: a post-hoc analysis of the B-proof trial. Eur J Nutr. 2022;61:3731–9.

Article  PubMed  PubMed Central  Google Scholar 

Hallen A, Cooper AJL. Reciprocal control of thyroid binding and the pipecolate pathway in the brain. Neurochem Res. 2017;42:217–43. https://doi.org/10.1007/s11064-016-2015-9.

Article  CAS  PubMed  Google Scholar 

Fujita T, Hada T, Higashino K. Origin of D- and L-pipecolic acid in human physiological fluids: a study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clin Chim Acta. 1999;287:145–56.

Article  CAS  PubMed  Google Scholar 

Plecko B, Hoeger H, Jakobs C, Struys E, Stromberger C, Leschnik M, et al. Pipecolic acid concentrations in brain tissue of nutritionally pyridoxine-deficient rats. J Inherit Metab Dis. 2005;28:689–93.

Article  CAS  PubMed  Google Scholar 

Petersen AK, Zeilinger S, Kastenmüller G, Werner RM, Brugger M, Peters A, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23:534–45.

Article  CAS  PubMed  Google Scholar 

Peng Y, Akmentin W, Connelly MA, Lund-Katz S, Phillips MC, Williams DL. Scavenger receptor BI (SR-BI) clustered on microvillar extensions suggests that this plasma membrane domain is a way station for cholesterol trafficking between cells and high-density lipoprotein. Mol Biol Cell. 2004;15:384–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2012;2:328–43.

Article  CAS  PubMed  Google Scholar 

Shen L, Du J, Xia Y, Tan Z, Fu Y, Yang Q, et al. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Sci Rep. 2016;6:1–11.

CAS  Google Scholar 

Morcillo S, Martín-Núñez GM, Garciá-Serrano S, Gutierrez-Repiso C, Rodriguez-Pacheco F, Valdes S, et al. Changes in SCD gene DNA methylation after bariatric surgery in morbidly obese patients are associated with free fatty acids. Sci Rep. 2017;7:1–8.

Article  Google Scholar 

Lim JKM, Delaidelli A, Minaker SW, Zhang HF, Colovic M, Yang H, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci. 2019;116:9433–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18:522–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalto DB, Matte JJ. Pyridoxine (Vitamin B6) and the glutathione peroxidase system; a link between one-carbon metabolism and antioxidation. Nutrients. 2017;9:1–13.

Article 

Comments (0)

No login
gif