The mediating role of obesity on the prospective association between urinary sucrose and diabetes incidence in a sub-cohort of the EPIC-Norfolk

Schlesinger S, Neuenschwander M, Ballon A, Nothlings U, Barbaresko J. Adherence to healthy lifestyles and incidence of diabetes and mortality among individuals with diabetes: a systematic review and meta-analysis of prospective studies. J Epidemiol Community Health. 2020;74:481–7.

Article  PubMed  Google Scholar 

Imamura F, O’Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015;351:h3576.

Article  PubMed  PubMed Central  Google Scholar 

Imamura F, Schulze MB, Sharp SJ, Guevara M, Romaguera D, Bendinelli B, et al. Estimated substitution of tea or coffee for sugar-sweetened beverages was associated with lower type 2 diabetes incidence in case-cohort analysis across 8 european countries in the EPIC-InterAct study. J Nutr. 2019;149:1985–93.

Article  PubMed  PubMed Central  Google Scholar 

Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 2019;366:l2368.

Article  PubMed  PubMed Central  Google Scholar 

Hodge AM, English DR, O’Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care. 2004;27:2701–6.

Article  PubMed  Google Scholar 

Janket SJ, Manson JE, Sesso H, Buring JE, Liu S. A prospective study of sugar intake and risk of type 2 diabetes in women. Diabetes Care. 2003;26:1008–15.

Article  PubMed  Google Scholar 

Montonen J, Jarvinen R, Knekt P, Heliovaara M, Reunanen A. Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr. 2007;137:1447–54.

Article  CAS  PubMed  Google Scholar 

Ahmadi-Abhari S, Luben RN, Powell N, Bhaniani A, Chowdhury R, Wareham NJ, et al. Dietary intake of carbohydrates and risk of type 2 diabetes: the European Prospective Investigation into Cancer-Norfolk study. Br J Nutr. 2014;111:342–52.

Article  CAS  PubMed  Google Scholar 

Sluijs I, Beulens JW, van der Schouw YT, van der AD, Buckland G, Kuijsten A, et al. Dietary glycemic index, glycemic load, and digestible carbohydrate intake are not associated with risk of type 2 diabetes in eight European countries. J Nutr. 2013;143:93–9.

Article  CAS  PubMed  Google Scholar 

Barclay AW, Flood VM, Rochtchina E, Mitchell P, Brand-Miller JC. Glycemic index, dietary fiber, and risk of type 2 diabetes in a cohort of older Australians. Diabetes Care. 2007;30:2811–3.

Article  PubMed  Google Scholar 

Kanehara R, Goto A, Sawada N, Mizoue T, Noda M, Hida A, et al. Association between sugar and starch intakes and type 2 diabetes risk in middle-aged adults in a prospective cohort study. Eur J Clin Nutr. 2021;76:746–755.

Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr. 2000;71:921–30. 2000

Article  CAS  PubMed  Google Scholar 

Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of clinical diabetes in women. Am J Clin Nutr. 1992;55:1018–23.

Article  CAS  PubMed  Google Scholar 

Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr. 2008;99:1107–16.

Article  CAS  PubMed  Google Scholar 

Tsilas CS, de Souza RJ, Mejia SB, Mirrahimi A, Cozma AI, Jayalath VH, et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. CMAJ 2017;189:E711–E20.

Article  PubMed  PubMed Central  Google Scholar 

Lutomski JE, van den Broeck J, Harrington J, Shiely F, Perry IJ. Sociodemographic, lifestyle, mental health and dietary factors associated with direction of misreporting of energy intake. Public Health Nutr. 2011;14:532–41.

Article  PubMed  Google Scholar 

Gottschald M, Knuppel S, Boeing H, Buijsse B. The influence of adjustment for energy misreporting on relations of cake and cookie intake with cardiometabolic disease risk factors. Eur J Clin Nutr. 2016;70:1318–24.

Article  CAS  PubMed  Google Scholar 

Kuhnle GG, Tasevska N, Lentjes MA, Griffin JL, Sims MA, Richardson L, et al. Association between sucrose intake and risk of overweight and obesity in a prospective sub-cohort of the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk). Public Health Nutr. 2015;18:2815–24.

Article  PubMed  PubMed Central  Google Scholar 

Bingham S, Luben R, Welch A, Tasevska N, Wareham N, Khaw KT. Epidemiologic assessment of sugars consumption using biomarkers: comparisons of obese and nonobese individuals in the European prospective investigation of cancer Norfolk. Cancer Epidemiol Biomark Prev. 2007;16:1651–4.

Article  CAS  Google Scholar 

Taubes G. What if sugar is worse than just empty calories? An essay by Gary Taubes. BMJ 2018;360:j5808.

Article  PubMed  Google Scholar 

Lang A, Kuss O, Filla T, Schlesinger S. Association between per capita sugar consumption and diabetes prevalence mediated by the body mass index: results of a global mediation analysis. Eur J Nutr. 2021;60:2121–9.

Article  CAS  PubMed  Google Scholar 

Willett WC. Nutritional Epidemiology. 3rd edn. New York, NY: Oxford University Press. 2013.

Lachat C, Hawwash D, Ocke MC, Berg C, Forsum E, Hornell A, et al. Strengthening the reporting of observational studies in epidemiology-nutritional epidemiology (STROBE-nut): an extension of the STROBE statement. PLoS Med. 2016;13:e1002036.

Article  PubMed  PubMed Central  Google Scholar 

Tasevska N, Runswick SA, McTaggart A, Bingham SA. Urinary sucrose and fructose as biomarkers for sugar consumption. Cancer Epidemiol Biomark Prev. 2005;14:1287–94.

Article  CAS  Google Scholar 

Cooper AJ, Sharp SJ, Lentjes MA, Luben RN, Khaw KT, Wareham NJ, et al. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care. 2012;35:1293–300.

Article  PubMed  PubMed Central  Google Scholar 

Park JY, Mitrou PN, Keogh RH, Luben RN, Wareham NJ, Khaw KT. Self-reported and measured anthropometric data and risk of colorectal cancer in the EPIC-Norfolk study. Int J Obes (Lond). 2012;36:107–18.

Article  CAS  PubMed  Google Scholar 

Wareham NJ, Jakes RW, Rennie KL, Mitchell J, Susie Hennings S, Day NE. Validity and repeatability of the EPIC-Norfolk Physical Activity Questionnaire. Int J Epidemiol. 2002;31:168–74. 2002

Article  PubMed  Google Scholar 

VanderWeele TJ. Causal mediation analysis with survival data. Epidemiology 2011;22:582–5.

Article  PubMed  PubMed Central  Google Scholar 

Creed J, Gerke T Causal mediation analysis in R. https://github.com/GerkeLab/mediator.

VanderWeele TJ. Mediation analysis: a practitioner’s guide. Annu Rev Public Health. 2016;37:17–32.

Article  PubMed  Google Scholar 

VanderWeele TJ. A three-way decomposition of a total effect into direct, indirect, and interactive effects. Epidemiology 2013;24:224–32.

Article  PubMed  PubMed Central  Google Scholar 

Fasanelli F, Giraudo MT, Ricceri F, Valeri L, Zugna D. Marginal time-dependent causal effects in mediation analysis with survival data. Am J Epidemiol. 2019;188:967–74.

Article  PubMed  Google Scholar 

Joosen AM, Kuhnle GG, Runswick SA, Bingham SA. Urinary sucrose and fructose as biomarkers of sugar consumption: comparison of normal weight and obese volunteers. Int J Obes (Lond). 2008;32:1736–40.

Article  CAS  PubMed  Google Scholar 

Tasevska N, Sagi-Kiss V, Palma-Duran SA, Barrett B, Chaloux M, Commins J, et al. Investigating the performance of 24-h urinary sucrose and fructose as a biomarker of total sugars intake in US participants - a controlled feeding study. Am J Clin Nutr. 2021;114:721–30.

Article  PubMed  PubMed Central  Google Scholar 

Tasevska N, Midthune D, Potischman N, Subar AF, Cross AJ, Bingham SA, et al. Use of the predictive sugars biomarker to evaluate self-reported total sugars intake in the Observing Protein and Energy Nutrition (OPEN) study. Cancer Epidemiol Biomark Prev. 2011;20:490–500.

Article  CAS  Google Scholar 

Tasevska N, Pettinger M, Kipnis V, Midthune D, Tinker LF, Potischman N, et al. Associations of biomarker-calibrated intake of total sugars with the risk of type 2 diabetes and cardiovascular disease in the Women’s health initiative observational study. Am J Epidemiol. 2018;187:2126–35.

Article  PubMed  PubMed Central  Google Scholar 

Campbell R, Tasevska N, Jackson KG, Sagi-Kiss V, di Paolo N, Mindell JS, et al. Association between urinary biomarkers of total sugars intake and measures of obesity in a cross-sectional study. PLoS One. 2017;12:e0179508.

Article  PubMed  PubMed Central  Google Scholar 

Ramne S, Gray N, Hellstrand S, Brunkwall L, Enhorning S, Nilsson PM, et al. Comparing self-reported sugar intake with the sucrose and fructose biomarker from overnight urine samples in relation to cardiometabolic risk factors. Front Nutr. 2020;7:62.

Article  PubMed  PubMed Central  Google Scholar 

Beasley JM, Jung M, Tasevska N, Wong WW, Siega-Riz AM, Sotres-Alvarez D, et al. Biomarker-predicted sugars intake compared with self-reported measures in US Hispanics/Latinos: results from the HCHS/SOL SOLNAS study. Public Health Nutr. 2016;19:3256–64.

Article  CAS 

留言 (0)

沒有登入
gif