Update on Large-Vessel Revascularization in Acute Ischemic Stroke

Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying cause of death 1999–2020 on CDC WONDER Online Database, released in 2021. Data are from the Multiple Cause of Death Files, 1999–2020, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program.

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/cir.0000000000000757.

Article  PubMed  Google Scholar 

Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021;97(20 Suppl 2):S6-s16. https://doi.org/10.1212/wnl.0000000000012781.

Article  PubMed  Google Scholar 

Rai AT, Seldon AE, Boo S, Link PS, Domico JR, Tarabishy AR, et al. A population-based incidence of acute large vessel occlusions and thrombectomy eligible patients indicates significant potential for growth of endovascular stroke therapy in the USA. J Neurointerv Surg. 2017;9(8):722–6. https://doi.org/10.1136/neurintsurg-2016-012515.

Article  PubMed  Google Scholar 

Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet (London, England). 2016;387(10029):1723–31. https://doi.org/10.1016/s0140-6736(16)00163-x.

Article  PubMed  Google Scholar 

Desai SM, Rocha M, Molyneaux BJ, Starr M, Kenmuir CL, Gross BA, et al. Thrombectomy 6–24 hours after stroke in trial ineligible patients. J Neurointerv Surg. 2018;10(11):1033–7. https://doi.org/10.1136/neurintsurg-2018-013915.

Article  PubMed  Google Scholar 

Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016;15(11):1138–47. https://doi.org/10.1016/s1474-4422(16)30177-6.

Article  CAS  PubMed  Google Scholar 

Broeg-Morvay A, Mordasini P, Bernasconi C, Bühlmann M, Pult F, Arnold M, et al. Direct mechanical intervention versus combined intravenous and mechanical intervention in large artery anterior circulation stroke: a matched-pairs analysis. Stroke. 2016;47(4):1037–44. https://doi.org/10.1161/strokeaha.115.011134.

Article  PubMed  Google Scholar 

Mistry EA, Mistry AM, Nakawah MO, Chitale RV, James RF, Volpi JJ, et al. Mechanical thrombectomy outcomes with and without intravenous thrombolysis in stroke patients: a meta-analysis. Stroke. 2017;48(9):2450–6. https://doi.org/10.1161/strokeaha.117.017320.

Article  PubMed  Google Scholar 

• Yang P, Zhang Y, Zhang L, Zhang Y, Treurniet KM, Chen W, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N Engl J Med. 2020;382(21):1981–93. https://doi.org/10.1056/NEJMoa2001123. DIRECT-MT clinical trial: In Chinese patients with acute ischemic stroke from large-vessel occlusion, endovascular thrombectomy alone was noninferior with regard to functional outcome, within a 20% margin of confidence, to endovascular thrombectomy preceded by intravenous alteplase administered within 4.5 hours after symptom onset. Endovascular thrombectomy alone was noninferior to combined intravenous alteplase and endovascular thrombectomy with regard to the primary outcome (adjusted common odds ratio, 1.07; 95% confidence interval, 0.81 to 1.40; P = 0.04 for noninferiority) but was associated with lower percentages of patients with successful reperfusion before thrombectomy (2.4% vs. 7.0%) and overall successful reperfusion (79.4% vs. 84.5%).

Article  CAS  PubMed  Google Scholar 

• Suzuki K, Matsumaru Y, Takeuchi M, Morimoto M, Kanazawa R, Takayama Y, et al. Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: the SKIP randomized clinical trial. JAMA. 2021;325(3):244–53. https://doi.org/10.1001/jama.2020.23522. Among patients with acute large vessel occlusion stroke, mechanical thrombectomy alone, compared with combined intravenous thrombolysis plus mechanical thrombectomy, failed to demonstrate noninferiority regarding favorable functional outcome (difference, 2.1% [1-sided 97.5% CI, −11.4% to ∞]; odds ratio, 1.09 [1-sided 97.5% CI, 0.63 to ∞]; P = .18 for noninferiority). However, the wide confidence intervals around the effect estimate also did not allow a conclusion of inferiority.

Article  PubMed  PubMed Central  Google Scholar 

• Renú A, Millán M, San Román L, Blasco J, Martí-Fàbregas J, Terceño M, et al. Effect of intra-arterial alteplase vs placebo following successful thrombectomy on functional outcomes in patients with large vessel occlusion acute ischemic stroke: the CHOICE randomized clinical trial. JAMA. 2022;327(9):826–35. https://doi.org/10.1001/jama.2022.1645. Among patients with large vessel occlusion acute ischemic stroke and successful reperfusion following thrombectomy, the use of adjunct intra-arterial alteplase compared with placebo resulted in a greater likelihood of excellent neurological outcome at 90 days. The proportion of participants with a modified Rankin Scale score of 0 or 1 at 90 days was 59.0% with alteplase and 40.4% with placebo (adjusted risk difference, 18.4%; 95% CI, 0.3%-36.4%; P = .047). The proportion of patients with symptomatic intracranial hemorrhage within 24 hours was 0% with alteplase and 3.8% with placebo (risk difference, −3.8%; 95% CI, −13.2% to 2.5%). The study was terminated early for inability to maintain placebo availability and enrollment rate because of the COVID-19 pandemic. 

Article  CAS  PubMed  Google Scholar 

Sarraj A, Albers GW, Blasco J, Arenillas JF, Ribo M, Hassan AE, et al. Thrombectomy vs medical management in mild strokes due to large vessel occlusion: exploratory analysis from the EXTEND-IA trials and a pooled international cohort. Ann Neurol. 2022. https://doi.org/10.1002/ana.26418.

Article  PubMed  Google Scholar 

Rocha M, Jovin TG. Fast versus slow progressors of infarct growth in large vessel occlusion stroke: clinical and research implications. Stroke. 2017;48(9):2621–7. https://doi.org/10.1161/strokeaha.117.017673.

Article  PubMed  Google Scholar 

Zhao H, Coote S, Pesavento L, Churilov L, Dewey HM, Davis SM, et al. Large vessel occlusion scales increase delivery to endovascular centers without excessive harm from misclassifications. Stroke. 2017;48(3):568–73. https://doi.org/10.1161/strokeaha.116.016056.

Article  PubMed  Google Scholar 

Ospel JM, Menon BK, Demchuk AM, Almekhlafi MA, Kashani N, Mayank A, et al. Clinical course of acute ischemic stroke due to medium vessel occlusion with and without intravenous alteplase treatment. Stroke. 2020;51(11):3232–40. https://doi.org/10.1161/strokeaha.120.030227.

Article  CAS  PubMed  Google Scholar 

Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20. https://doi.org/10.1056/NEJMoa1411587.

Article  CAS  PubMed  Google Scholar 

Saver JL, Chapot R, Agid R, Hassan A, Jadhav AP, Liebeskind DS, et al. Thrombectomy for distal, medium vessel occlusions: a consensus statement on present knowledge and promising directions. Stroke. 2020;51(9):2872–84. https://doi.org/10.1161/strokeaha.120.028956.

Article  PubMed  Google Scholar 

Seners P, Turc G, Maïer B, Mas JL, Oppenheim C, Baron JC. Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke. 2016;47(9):2409–12. https://doi.org/10.1161/strokeaha.116.014181.

Article  CAS  PubMed  Google Scholar 

Pérez-García C, Moreu M, Rosati S, Simal P, Egido JA, Gomez-Escalonilla C, et al. Mechanical thrombectomy in medium vessel occlusions: blind exchange with mini-pinning technique versus mini stent retriever alone. Stroke. 2020;51(11):3224–31. https://doi.org/10.1161/strokeaha.120.030815.

Article  PubMed  Google Scholar 

Zevallos CB, Farooqui M, Quispe-Orozco D, Mendez-Ruiz A, Patterson M, Below K, et al. Proximal Internal Carotid artery Acute Stroke Secondary to tandem Occlusions (PICASSO) international survey. J Neurointerv Surg. 2021;13(12):1106–10. https://doi.org/10.1136/neurintsurg-2020-017025.

Article  PubMed  Google Scholar 

Wilson MP, Murad MH, Krings T, Pereira VM, O’Kelly C, Rempel J, et al. Management of tandem occlusions in acute ischemic stroke — intracranial versus extracranial first and extracranial stenting versus angioplasty alone: a systematic review and meta-analysis. J Neurointerv Surg. 2018;10(8):721–8. https://doi.org/10.1136/neurintsurg-2017-013707.

Article  PubMed  Google Scholar 

Campbell BCV, Majoie C, Albers GW, Menon BK, Yassi N, Sharma G, et al. Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data. Lancet Neurol. 2019;18(1):46–55. https://doi.org/10.1016/s1474-4422(18)30314-4.

Article  PubMed  Google Scholar 

Zaidat OO, Liebeskind DS, Jadhav AP, Ortega-Gutierrez S, Nguyen TN, Haussen DC, et al. Impact of age and Alberta Stroke Program early computed tomography score 0 to 5 on mechanical thrombectomy outcomes: analysis from the STRATIS registry. Stroke. 2021;52(7):2220–8. https://doi.org/10.1161/strokeaha.120.032430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Yoshimura S, Sakai N, Yamagami H, Uchida K, Beppu M, Toyoda K, et al. Endovascular therapy for acute stroke with a large ischemic region. N Engl J Med. 2022;386(14):1303–13. https://doi.org/10.1056/NEJMoa2118191. RESCUE-Japan LIMIT clinical trial: In a trial conducted in Japan, patients with large cerebral infarctions had better functional outcomes with endovascular therapy than with medical care alone but had more intracranial hemorrhages. The percentage of patients with a modified Rankin scale score of 0 to 3 at 90 days was 31.0% in the endovascular-therapy group and 12.7% in the medical-care group (relative risk, 2.43; 95% confidence interval [CI], 1.35 to 4.37; P = 0.002). Any intracranial hemorrhage occurred in 58.0% and 31.4%, respectively (P < 0.001).

Article  PubMed  Google Scholar 

Huo X, Ma G, Tong X, Zhang X, Pan Y, Nguyen TN, et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med. 2023. https://doi.org/10.1056/NEJMoa2213379.

Article  PubMed  Google Scholar 

• Sarraj A, Hassan AE, Abraham MG, Ortega-Gutierrez S, Kasner SE, Hussain MS, et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med. 2023. https://doi.org/10.1056/NEJMoa2214403 . Select-2 trial conducted at 31 sites across United States, Canada, Europe, Australia, and New Zealand, showed that patients with large core infarcts had a significant shift in 90-day mRS scores favoring thrombectomy (generalized OR 1.51; 95% CI 1.20–1.89), with a number needed to treat of about 5. Thrombectomy was associated with increased rates of functional independence and independent ambulation. The trial was stopped early for efficacy. The thrombectomy group exhibited functional independence in 20% of patients, whereas only 7% in the medical care group showed the same outcome, indicating a relative risk of 2.97 (95% CI, 1.60 to 5.51).

Article  PubMed  Google Scholar 

Desai SM, Haussen DC, Aghaebrahim A, Al-Bayati AR, Santos R, Nogueira RG, et al. Thrombectomy 24 hours after stroke: beyond DAWN. J Neurointerv Surg. 2018;10(11):1039–42. https://doi.org/10.1136/neurintsurg-2018-013923.

Article  PubMed  Google Scholar 

Mordasini P, Brekenfeld C, Byrne JV, Fischer U, Arnold M, Heldner MR, et al. Technical feasibility and application of mechanical thrombectomy with the Solitaire FR Revascularization Device in acute basilar artery occlusion. AJNR Am J Neuroradiol. 2013;34(1):159–63. https://doi.org/10.3174/ajnr.A3168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Dai Q, Ye R, Zi W, Liu Y, Wang H, et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an open-label, randomised controlled trial. Lancet Neurol. 2020;19(2):115–22. https://doi.org/10.1016/s1474-4422(19)30395-3.

Article  PubMed  Google Scholar 

Langezaal LCM, van der Hoeven E, Mont’Alverne FJA, de Carvalho JJF, Lima FO, Dippel DWJ, et al. Endovascular therapy for stroke due to basilar-artery occlusion. N Engl J Med. 2021;384(20):1910–20.  https://doi.org/10.1056/NEJMoa2030297.

Jovin TG, Li C, Wu L, Wu C, Chen J, Jiang C, et al. Trial of thrombectomy 6 to 24 hours after stroke due to basilar-artery occlusion. N Engl J Med. 2022;387(15):1373–84. https://doi.org/10.1056/NEJMoa2207576.

Article  PubMed  Google Scholar 

Tao C, Nogueira RG, Zhu Y, Sun J, Han H, Yuan G, et al. Trial of endovascular treatment of acute basilar-artery occlusion. N Engl J Med. 2022;387(15):1361–72. https://doi.org/10.1056/NEJMoa2206317.

Article  PubMed  Google Scholar 

Engle R, Ellis C. Pediatric stroke in the U.S.: estimates from the kids’ inpatient database. J Allied Health. 2012;41(3):e63–7.

Felling RJ, Sun LR, Maxwell EC, Goldenberg N, Bernard T. Pediatric arterial ischemic stroke: epidemiology, risk factors, and management. Blood Cells Mol Dis. 2017;67:23–33. https://doi.org/10.1016/j.bcmd.2017.03.003.

Article  PubMed  Google Scholar 

Elbers J, deVeber G, Pontigon AM, Moharir M. Long-term outcomes of pediatric ischemic stroke in adulthood. J Child Neurol. 2014;29(6):782–8. https://doi.org/10.1177/0883073813484358.

Comments (0)

No login
gif