Chromosomal evolution of Suboscines: Karyotype diversity and evolutionary trends in Ovenbirds (Passeriformes, Furnariidae)

Cytogenetic and Genome Research

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply

Start free trial

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details Abstract

Furnariidae (Ovenbirds) is one of the most diversified families in the Passeriformes order and Suboscines suborder. Despite their great diversity of species, cytogenetic research is still in its early stages, restricting our knowledge of their karyotype evolution. We combined traditional and molecular cytogenetic analyses in three representative species, Synallaxis frontalis, Syndactyla rufosuperciliata, and Cranioleuca obsoleta, to examine the chromosomal structure and evolution of Ovenbirds. Our findings reveal that all the species studied had the same diploid number (2n= 82). Differences in chromosomal morphology of some macrochromosomes indicate the presence of intrachromosomal rearrangements. Although the three species only had the 18S rDNA on one microchromosome pair, chromosomal mapping of six simple short repeats revealed a varied pattern of chromosome distribution among them, suggesting that each species underwent different repetitive DNA accumulation upon their divergence. The interspecific comparative genomic hybridization (CGH) experiment revealed that the Furnariidae species investigated carry centromeric regions enriched in similar repetitive sequences, bolstering the Furnariidae family's karyotype conservation. Nonetheless, the outgroup species Turdus rufiventris (Turdidae) demonstrated an advanced stage of sequence divergence with hybridization signals that were almost entirely limited to a few microchromosomes. Overall, the findings imply that Furnariidae species have a high degree of chromosomal conservation, and also we could observe a differentiation of repetitive sequences in both Passeriformes suborders (Suboscines and Oscines).

S. Karger AG, Basel

Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Comments (0)

No login
gif