NAD+, Senolytics, or Pyruvate for Healthy Aging?

1. Katsyuba, E, Romani, M, Hofer, D, Auwerx, J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2:9–31.
Google Scholar | Crossref | Medline2. Kang, BE, Choi, JY, Stein, S, Ryu, D. Implications of NAD+ boosters in translational medicine. Eur J Clin Invest. 2020;50:e13334.
Google Scholar | Crossref | Medline3. Wang, Y, Huang, Y, Yang, J, Zhou, FQ, Zhao, L, Zhou, H. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis. Mil Med Res. 2018;5:13.
Google Scholar | Medline4. Zhang, XM, Deng, H, Tong, JD, et al. Pyruvate-enriched oral rehydration solution improves glucometabolic disorders in the kidneys of diabetic db/db mice. J Diabetes Res. 2020;2020:2817972.
Google Scholar | Crossref | Medline5. Covarrubias, AJ, Perrone, R, Grozio, A, Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22:119–141.
Google Scholar | Crossref | Medline6. Bonkowski, MS, Sinclair, DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17:679–690.
Google Scholar | Crossref | Medline | ISI7. Li, J, Bonkowski, MS, Moniot, S, et al. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science. 2017;355:1312–1317.
Google Scholar | Crossref | Medline8. Tarantini, S, Valcarcel-Ares, MN, Toth, P, et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 2019;24:101192.
Google Scholar | Crossref | Medline9. Shi, B, Wang, W, Korman, B, et al. Targeting CD38-dependent NAD+ metabolism to mitigate multiple organ fibrosis. iScience. 2020;24:101902.
Google Scholar | Crossref | Medline10. Kumakura, S, Sato, E, Sekimoto, A, et al. Nicotinamide attenuates the progression of renal failure in a mouse model of adenine-induced chronic kidney disease. Toxins. 2021;13:50.
Google Scholar | Crossref | Medline11. Poyan, Mehr A, Tran, MT, Ralto, KM, et al. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nat Med. 2018;24:1351–1359.
Google Scholar | Crossref | Medline12. Radenkovic, D, Verdin, E. Clinical evidence for targeting NAD therapeutically. Pharmaceuticals. 2020;13:247.
Google Scholar | Crossref13. Pirinen, E, Auranen, M, Khan, NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;32:144.
Google Scholar | Crossref | Medline14. Xiang, D, Zhang, Q, Wang, YT. Effectiveness of niacin supplementation for patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Medicine. 2020;99:e21235.
Google Scholar | Crossref | Medline15. Harrison, DE, Strong, R, Reifsnyder, P, et al. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell. 2021;20:e13328.
Google Scholar | Crossref | Medline16. Yoshida, M, Satoh, A, Lin, JB, et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 2019;30:329-342.e5.
Google Scholar | Crossref | Medline17. Hwang, ES, Song, SB. Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules. 2020;10:687.
Google Scholar | Crossref18. Grant, R, Berg, J, Mestayer, R, et al. A pilot study investigating changes in the human plasma and urine NAD+ metabolome during a 6 hour intravenous infusion of NAD. Front Aging Neurosci. 2019;11:257.
Google Scholar | Crossref | Medline19. Rutherford, L, Gadol, E, Broom, SL, Olds, T, Mestayer, RF, Mestayer, P. Intravenous administration of nicotinamide adenine dinucleotide alleviates tremors associated with Parkinson’s disease: a case report. J Gerontol Geriatr Med. 2020;6:046.
Google Scholar20. Sabbatinelli, J, Prattichizzo, F, Olivieri, F, Procopio, AD, Rippo, MR, Giuliani, A. Where metabolism meets senescence: focus on endothelial cells. Front Physiol. 2019;10:1523.
Google Scholar | Crossref | Medline21. Baker, DJ, Childs, BG, Durik, M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530:184–189.
Google Scholar | Crossref | Medline | ISI22. Gil, J, Withers, DJ. Ageing: out with the old. Nature. 2016;530:164–165.
Google Scholar | Crossref | Medline23. Farr, JN, Rowsey, JL, Eckhardt, BA, et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: evidence in young adult mice and older humans. J Bone Miner Res. 2019;34:1407–1418.
Google Scholar | Crossref | Medline24. Justice, JN, Nambiar, AM, Tchkonia, T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–563.
Google Scholar | Crossref | Medline25. Schafer, MJ, White, TA, Iijima, K, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.
Google Scholar | Crossref | Medline26. Martyanov, V, Kim, GJ, Hayes, W, et al. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS One. 2017;12:e0187580.
Google Scholar | Crossref | Medline27. Martyanov, V, Whitfield, ML, Varga, J. Senescence signature in skin biopsies from systemic sclerosis patients treated with senolytic therapy: potential predictor of clinical response? Arthritis Rheumatol. 2019;71:1766–1767.
Google Scholar | Crossref | Medline28. Lehmann, M, Korfei, M, Mutze, K, et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J. 2017;50:1602367.
Google Scholar | Crossref | Medline29. Xu, M, Pirtskhalava, T, Farr, JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246–1256.
Google Scholar | Crossref | Medline30. Hickson, LJ, Langhi Prata, LGP, Bobart, SM, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–456.
Google Scholar | Crossref | Medline31. Palmer, AK, Xu, M, Zhu, Y, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18:e12950.
Google Scholar | Crossref | Medline32. Dookun, E, Walaszczyk, A, Redgrave, R, et al. Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery. Aging Cell. 2020;19:e13249.
Google Scholar | Crossref | Medline33. Coryell, PR, Diekman, BO, Loeser, RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol. 2021;17:47–57.
Google Scholar | Crossref | Medline34. Santin, Y, Lluel, P, Rischmann, P, Gamé, X, Mialet-Perez, J, Parini, A. Cellular senescence in renal and urinary tract disorders. Cells. 2020;9:2420.
Google Scholar | Crossref35. Robbins, PD, Jurk, D, Khosla, S, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021;61:779–803.
Google Scholar | Crossref | Medline36. Salehi, B, Machin, L, Monzote, L, et al. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega. 2020;5:11849–11872.
Google Scholar | Crossref | Medline37. Derosa, G, Maffioli, P, D’Angelo, A, Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. 2021;35:1230–1236.
Google Scholar | Crossref | Medline38. Malavolta, M, Giacconi, R, Brunetti, D, Provinciali, M, Maggi, F. Exploring the relevance of senotherapeutics for the current SARS-CoV-2 emergency and similar future global health threats. Cells. 2020;9:909.
Google Scholar | Crossref39. Nehme, J, Borghesan, M, Mackedenski, S, Bird, TG, Demaria, M. Cellular senescence as a potential mediator of COVID-19 severity in the elderly. Aging Cell. 2020;19:e13237.
Google Scholar | Crossref | Medline40. Camell, CD, Yousefzadeh, MJ, Zhu, Y, et al. Senolytics reduce coronavirus-related mortality in old mice. Science. 2021;373:eabe4832.
Google Scholar | Crossref | Medline41. Hu, S, Bai, XD, Liu, XQ, et al. Pyruvate ringer’s solution corrects lactic acidosis and prolongs survival during hemorrhagic shock in rats. J Emerg Med. 2013;45:885–893.
Google Scholar | Crossref | Medline | ISI42. Flaherty, DC, Hoxha, B, Sun, J, et al. Pyruvate-fortified fluid resuscitation improves hemodynamic stability while suppressing systemic inflammation and myocardial oxidative stress after hemorrhagic shock. Mil Med. 2010;175:166–172.
Google Scholar | Crossref | Medline | ISI43. Liu, R, Wang, SM, Liu, XQ, et al. Pyruvate alleviates lipid peroxidation and multiple-organ dysfunction in rats with hemorrhagic shock. Am J Emerg Med. 2016;34:525–530.
Google Scholar | Crossref | Medline44. Li, M, Zhou, S, Chen, C, et al. Therapeutic potential of pyruvate therapy for patients with mitochondrial diseases: a systematic review. Ther Adv Endocrinol Metab. 2020;11:2042018820938240.
Google Scholar | SAGE Journals45. Zhang, XM, Wang, YZ, Tong, JD, et al. Pyruvate alleviates high glucose-induced endoplasmic reticulum stress and apoptosis in HK-2 cells. FEBS Open Bio. 2020;10:827–834.
Google Scholar | Crossref | Medline46. Koivisto, H, Leinonen, H, Puurula, M, et al. Corrigendum: chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice. Front Aging Neurosci. 2017;9:67. Erratum for: Front Aging Neurosci. 2016;8:41.
Google Scholar | Crossref | Medline47. Han, C, Yang, H, Li, B, Wang, Z. Exogenous pyruvate facilitates ultraviolet B-induced DNA damage repair by promoting H3K9 acetylation in keratinocytes and melanocytes. Biomed Pharmacother. 2020;126:110082.
Google Scholar | Crossref | Medline48. Zhou, FQ . Pyruvate research and clinical application outlooks a revolutionary medical advance. Int J Nutr. 2020;5:1–9.
Google Scholar | Crossref49. Schillinger, W, Hünlich, M, Sossalla, S, Hermann, HP, Hasenfuss, G. Intracoronary pyruvate in cardiogenic shock as an adjunctive therapy to catecholamines and intra-aortic balloon pump shows beneficial effects on hemodynamics. Clin Res Cardiol. 2011;100:433–438.
Google Scholar | Crossref | Medline | ISI50. Mateva, L, Petkova, I, Petrov, K, et al. Ten-day course of sodium pyruvate infusions in patients with chronic liver diseases (CLD). Jpn Pharmacol Ther. 1996;24:2629–2639.
Google Scholar51. Petkova, I, Mateva, L, Beniozef, D, Petrov, K, Thorn, W. Sodium pyruvate infusions in patients with alcoholic liver disease. Preliminary report. Acta Physiol Pharmacol Bulg. 2000;25:103–108.
Google Scholar | Medline

Comments (0)

No login
gif