Song Y-T, et al. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Res Ther. 2021;12(1):556.
Article CAS PubMed PubMed Central Google Scholar
Yan J, et al. Apelin/APJ system: an emerging therapeutic target for respiratory diseases. Cell Mol Life Sci: CMLS. 2020;77(15):2919–30.
Article CAS PubMed PubMed Central Google Scholar
Gong G, et al. Apelin-13, a regulator of autophagy, apoptosis and inflammation in multifaceted bone protection. Int Immunopharmacol. 2023;117:109991.
Article CAS PubMed Google Scholar
Gao Z, et al. Apelin-13 alleviates diabetic nephropathy by enhancing nitric oxide production and suppressing kidney tissue fibrosis. Int J Mol Med. 2021;48(3):175.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, et al. Elevated reactivity of Apelin inhibited renal fibrosis induced by chronic intermittent hypoxia. Arch Biochem Biophys. 2021;711:109021.
Article CAS PubMed Google Scholar
Lee WL, et al. Focus on the primary prevention of intrauterine adhesions: current concept and vision. Int J Mol Sci. 2021;22(10):5175.
Article PubMed PubMed Central Google Scholar
Manfioletti G, Fedele M. Epithelial-mesenchymal transition (EMT). Int J Mol Sci. 2023;24(14):11386.
Article PubMed PubMed Central Google Scholar
Marconi GD, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells. 2021;10(7):1587.
Article PubMed PubMed Central Google Scholar
Zhou Z, et al. Defective autophagy contributes to endometrial epithelial-mesenchymal transition in intrauterine adhesions. Autophagy. 2022;18(10):2427–42.
Article CAS PubMed PubMed Central Google Scholar
Yao Y, et al. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res Ther. 2019;10(1):225.
Article PubMed PubMed Central Google Scholar
Wang L-Y, et al. Apelin attenuates TGF-β1-induced epithelial to mesenchymal transition via activation of PKC-ε in human renal tubular epithelial cells. Peptides. 2017;96:44–52.
Article CAS PubMed Google Scholar
Liao Z, et al. Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in female reproductive diseases. Front Endocrinol. 2021;12:665645.
Han X, et al. Transplantation of human adipose stem cells using acellular human amniotic membrane improves angiogenesis in injured endometrial tissue in a rat intrauterine adhesion model. Cell Transplant. 2020;29:963689720952055.
Chen D, et al. Intranasal delivery of apelin-13 is neuroprotective and promotes angiogenesis after ischemic stroke in mice. ASN Neuro. 2015. https://doi.org/10.1177/1759091415605114.
Article PubMed PubMed Central Google Scholar
Zhang S, et al. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion. Stem Cell Res Ther. 2019;10(1):61.
Article CAS PubMed PubMed Central Google Scholar
Zhao X, et al. Candida albicans-induced activation of the TGF-β/Smad pathway and upregulation of IL-6 may contribute to intrauterine adhesion. Sci Rep. 2023;13(1):579.
Article PubMed PubMed Central Google Scholar
Luo G, et al. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon. 2023;9(7):e17909.
Article CAS PubMed PubMed Central Google Scholar
Xu H, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics. 2020;10(13):5671–86.
Article CAS PubMed PubMed Central Google Scholar
Luo LH, et al. Long non-coding RNA NKILA inhibited angiogenesis of breast cancer through NF-κB/IL-6 signaling pathway. Microvasc Res. 2020;129:103968.
Article CAS PubMed Google Scholar
Dai Z, et al. Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis. Arch Oral Biol. 2019;102:7–15.
Article CAS PubMed Google Scholar
Abudukeyoumu A, Li M-Q, Xie F. Transforming growth factor-β1 in intrauterine adhesion. Am J Reprod Immunol. 2020;84(2):e13262.
Article CAS PubMed Google Scholar
Ma J, et al. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion. Biomater Res. 2021;25(1):40.
Article PubMed PubMed Central Google Scholar
Zhong S, et al. Apelin-13 alleviated cardiac fibrosis via inhibiting the PI3K/Akt pathway to attenuate oxidative stress in rats with myocardial infarction-induced heart failure. 2020. Biosci Rep. https://doi.org/10.1042/BSR20200040.
Yu C-C, et al. Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22042216.
Article PubMed PubMed Central Google Scholar
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84.
Article CAS PubMed Google Scholar
Ma MY, et al. Wogonin inhibits hepatoma cell proliferation by targeting miR-27b-5p/YWHAZ axis. J Biochem Mol Toxicol. 2023;37(12):e23508.
Article CAS PubMed Google Scholar
Frisch A, et al. Apelin controls angiogenesis-dependent glioblastoma growth. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21114179.
Article PubMed PubMed Central Google Scholar
Hu H-H, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83.
Article CAS PubMed Google Scholar
Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med. 2021. https://doi.org/10.3390/jcm10194430.
Article PubMed PubMed Central Google Scholar
Wu J, et al. LncRNA HOTAIR promotes endometrial fibrosis by activating TGF-β1/Smad pathway. Acta Biochim Biophys Sin. 2020;52(12):1337–47.
Article CAS PubMed Google Scholar
Huang S, et al. The apelin-APJ axis: a novel potential therapeutic target for organ fibrosis. Clin Chim Acta. 2016;456:81–8.
Article CAS PubMed Google Scholar
Wang LY, et al. Apelin attenuates TGF-beta1-induced epithelial to mesenchymal transition via activation of PKC-epsilon in human renal tubular epithelial cells. Peptides. 2017;96:44–52.
Comments (0)