Sreenivasan SA, Madhugiri VS, Sasidharan GM, Kumar RV (2016) Measuring glioma volumes: A comparison of linear measurement based formulae with the manual image segmentation technique. J Cancer Res Ther 12: 161–168 https://doi.org/10.4103/0973-1482.153999
Prezelski K, Hsu DG, Del Balzo L, Heller E, Ma J, Pike LRG, Ballangrud A, Aristophanous M (2024) Artificial-intelligence-driven measurements of brain metastases’ response to SRS compare favorably with current manual standards of assessment. Neurooncol Adv 6: vdae015 https://doi.org/10.1093/noajnl/vdae015
Wang Y, Wen Z, Su L, Deng H, Gong J, Xiang H, He Y, Zhang H, Zhou P, Pang H (2024) Improved brain metastases segmentation using generative adversarial network and conditional random field optimization mask R-CNN. Med Phys https://doi.org/10.1002/mp.17176
Shunmugavel G, Suriyan K, Arumugam J (2024) Magnetic Resonance Imaging Images Based Brain Tumor Extraction, Segmentation and Detection Using Convolutional Neural Network and VGC 16 Model. Am J Clin Oncol https://doi.org/10.1097/COC.0000000000001097
Beser-Robles M, Castella-Malonda J, Martinez-Girones PM, Galiana-Bordera A, Ferrer-Lozano J, Ribas-Despuig G, Teruel-Coll R, Cerda-Alberich L, Marti-Bonmati L (2024) Deep learning automatic semantic segmentation of glioblastoma multiforme regions on multimodal magnetic resonance images. Int J Comput Assist Radiol Surg https://doi.org/10.1007/s11548-024-03205-z
Song J, Lu X, Gu Y (2024) GMAlignNet: multi-scale lightweight brain tumor image segmentation with enhanced semantic information consistency. Phys Med Biol 69 https://doi.org/10.1088/1361-6560/ad4301
Fick T, van Doormaal JAM, Tosic L, van Zoest RJ, Meulstee JW, Hoving EW, van Doormaal TPC (2021) Fully automatic brain tumor segmentation for 3D evaluation in augmented reality. Neurosurg Focus 51: E14 https://doi.org/10.3171/2021.5.FOCUS21200
Machura B, Kucharski D, Bozek O, Eksner B, Kokoszka B, Pekala T, Radom M, Strzelczak M, Zarudzki L, Gutierrez-Becker B, Krason A, Tessier J, Nalepa J (2024) Deep learning ensembles for detecting brain metastases in longitudinal multi-modal MRI studies. Comput Med Imaging Graph 116: 102401 https://doi.org/10.1016/j.compmedimag.2024.102401
Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, Peters S, Arvold ND, Harsh GR, Steeg PS, Chang SD (2019) Brain metastases. Nat Rev Dis Primers 5: 5 https://doi.org/10.1038/s41572-018-0055-y
Graber JJ, Cobbs CS, Olson JJ (2019) Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Use of Stereotactic Radiosurgery in the Treatment of Adults With Metastatic Brain Tumors. Neurosurgery 84: E168-E170 https://doi.org/10.1093/neuros/nyy543
Lam TC, Sahgal A, Chang EL, Lo SS (2014) Stereotactic radiosurgery for multiple brain metastases. Expert Rev Anticancer Ther 14: 1153–1172 https://doi.org/10.1586/14737140.2014.940325
Rivers C, Tranquilli M, Prasad S, Winograd E, Plunkett RJ, Fenstermaker RA, Fabiano AJ, Podgorsak MB, Prasad D (2017) Impact of the Number of Metastatic Tumors Treated by Stereotactic Radiosurgery on the Dose to Normal Brain: Implications for Brain Protection. Stereotact Funct Neurosurg 95: 352–358 https://doi.org/10.1159/000480666
Mix M, Elmarzouky R, O’Connor T, Plunkett R, Prasad D (2016) Clinical outcomes in patients with brain metastases from breast cancer treated with single-session radiosurgery or whole brain radiotherapy. J Neurosurg 125: 26–30 https://doi.org/10.3171/2016.7.GKS161541
Lee YC, Wieczorek DJ, Chaswal V, Kotecha R, Hall MD, Tom MC, Mehta MP, McDermott MW, Gutierrez AN, Tolakanahalli R (2023) A study on inter-planner plan quality variability using a manual planning- or Lightning dose optimizer-approach for single brain lesions treated with the Gamma Knife((R)) Icon. J Appl Clin Med Phys 24: e14088 https://doi.org/10.1002/acm2.14088
Kim M, Wang JY, Lu W, Jiang H, Stojadinovic S, Wardak Z, Dan T, Timmerman R, Wang L, Chuang C, Szalkowski G, Liu L, Pollom E, Rahimy E, Soltys S, Chen M, Gu X (2024) Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today? Bioengineering (Basel) 11 https://doi.org/10.3390/bioengineering11050454
Ahamed MF, Hossain MM, Nahiduzzaman M, Islam MR, Islam MR, Ahsan M, Haider J (2023) A review on brain tumor segmentation based on deep learning methods with federated learning techniques. Comput Med Imaging Graph 110: 102313 https://doi.org/10.1016/j.compmedimag.2023.102313
Chen H, Ban D, Qi XS, Pan X, Qiang Y, Yang Q (2021) A hybrid feature selection-based approach for brain tumor detection and automatic segmentation on multiparametric magnetic resonance images. Med Phys 48: 6614–6626 https://doi.org/10.1002/mp.15026
Du S, Gong G, Chen M, Liu R, Meng K, Yin Y (2024) The effect of time-delayed contrast-enhanced scanning in determining the gross tumor target volume of large-volume brain metastases. Radiother Oncol 197: 110330 https://doi.org/10.1016/j.radonc.2024.110330
Hsu DG, Ballangrud A, Prezelski K, Swinburne NC, Young R, Beal K, Deasy JO, Cervino L, Aristophanous M (2023) Automatically tracking brain metastases after stereotactic radiosurgery. Phys Imaging Radiat Oncol 27: 100452 https://doi.org/10.1016/j.phro.2023.100452
Comments (0)