Artificial Intelligence for Diagnosis of Obstructive Sleep Apnea

American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.

Google Scholar 

Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14. https://doi.org/10.1093/aje/kws342.

Article  PubMed  PubMed Central  Google Scholar 

Redline S, Sotres-Alvarez D, Loredo J, Hall M, Patel SR, Ramos A, et al. Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. Am J Respir Crit Care Med. 2014;189(3):335–44. https://doi.org/10.1164/rccm.201309-1735OC.

Article  PubMed  PubMed Central  Google Scholar 

Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–98. https://doi.org/10.1016/S2213-2600(19)30198-5.

Article  PubMed  PubMed Central  Google Scholar 

Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52(8):686–717. https://doi.org/10.1016/j.jacc.2008.05.002.

Article  PubMed  Google Scholar 

Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84. https://doi.org/10.1056/NEJM200005113421901.

Article  CAS  PubMed  Google Scholar 

Sharma S, Culebras A. Sleep apnoea and stroke. Stroke Vasc Neurol. 2016;1(4):185–91. https://doi.org/10.1136/svn-2016-000038.

Article  PubMed  PubMed Central  Google Scholar 

Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306(6):613–9. https://doi.org/10.1001/jama.2011.1115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HC, Young T, Matthews CG, Weber SM, Woodward AR, Palta M. Sleep-disordered breathing and neuropsychological deficits. A population-based study. Am J Respir Crit Care Med. 1997;156(6):1813–9. https://doi.org/10.1164/ajrccm.156.6.9610026.

Article  CAS  PubMed  Google Scholar 

Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31(8):1071–8.

PubMed  PubMed Central  Google Scholar 

Marshall NS, Wong KK, Liu PY, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep. 2008;31(8):1079–85.

PubMed  PubMed Central  Google Scholar 

Ayas NT, FitzGerald JM, Fleetham JA, White DP, Schulzer M, Ryan CF, et al. Cost-effectiveness of continuous positive airway pressure therapy for moderate to severe obstructive sleep apnea/hypopnea. Arch Intern Med. 2006;166(9):977–84. https://doi.org/10.1001/archinte.166.9.977.

Article  PubMed  Google Scholar 

Frost and Sullivan. Hidden health crisis costing America billions. Underdiagnosing and undertreating obstructive sleep apnea draining healthcare system. American Academy of Sleep Medicine. 2016. www.aasm.org.

Renganathan V. Overview of artificial neural network models in the biomedical domain. Bratisl Lek Listy. 2019;120(7):536–40. https://doi.org/10.4149/BLL_2019_087.

Article  CAS  PubMed  Google Scholar 

Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021;14(1):86–93. https://doi.org/10.1111/cts.12884.

Article  PubMed  Google Scholar 

Brennan HL, Kirby SD. Barriers of artificial intelligence implementation in the diagnosis of obstructive sleep apnea. J Otolaryngol Head Neck Surg. 2022;51(1):16. https://doi.org/10.1186/s40463-022-00566-w.

Article  PubMed  PubMed Central  Google Scholar 

Nazer LH, Zatarah R, Waldrip S, Ke JXC, Moukheiber M, Khanna AK, et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit Health. 2023;2(6):e0000278. https://doi.org/10.1371/journal.pdig.0000278.

Article  PubMed  PubMed Central  Google Scholar 

Tiribelli S, Monnot A, Shah SFH, Arora A, Toong PJ, Kong S. Ethics Principles for Artificial Intelligence-Based Telemedicine for Public Health. Am J Public Health. 2023;113(5):577–84. https://doi.org/10.2105/ajph.2023.307225.

Article  PubMed  Google Scholar 

Bandyopadhyay A, Goldstein C. Clinical applications of artificial intelligence in sleep medicine: a sleep clinician’s perspective. Sleep Breath. 2023;27(1):39–55. https://doi.org/10.1007/s11325-022-02592-4.

Article  PubMed  Google Scholar 

Westbrook PR, Levendowski DJ, Cvetinovic M, Zavora T, Velimirovic V, Henninger D, et al. Description and validation of the apnea risk evaluation system: a novel method to diagnose sleep apnea-hypopnea in the home. Chest. 2005;128(4):2166–75. https://doi.org/10.1378/chest.128.4.2166.

Article  PubMed  Google Scholar 

Ioachimescu OC, Dholakia SA, Venkateshiah SB, Fields B, Samarghandi A, Anand N, et al. Improving the performance of peripheral arterial tonometry-based testing for the diagnosis of obstructive sleep apnea. J Investig Med. 2020;68(8):1370–8. https://doi.org/10.1136/jim-2020-001448.

Article  PubMed  PubMed Central  Google Scholar 

Hung CJ, Kang BH, Lin YS, Su HH. Comparison of a home sleep test with in-laboratory polysomnography in the diagnosis of obstructive sleep apnea syndrome. J Chin Med Assoc. 2022;85(7):788–92. https://doi.org/10.1097/jcma.0000000000000741.

Article  PubMed  Google Scholar 

Ioachimescu OC, Allam JS, Samarghandi A, Anand N, Fields BG, Dholakia SA, et al. Performance of peripheral arterial tonometry-based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort. J Clin Sleep Med. 2020;16(10):1663–74. https://doi.org/10.5664/jcsm.8620.

Article  PubMed  PubMed Central  Google Scholar 

Zhang L, Yan YR, Li SQ, Li HP, Lin YN, Li N, et al. Moderate to severe OSA screening based on support vector machine of the Chinese population faciocervical measurements dataset: a cross-sectional study. BMJ Open. 2021;11(9):e048482. https://doi.org/10.1136/bmjopen-2020-048482.

Article  PubMed  PubMed Central  Google Scholar 

Kuan YC, Hong CT, Chen PC, Liu WT, Chung CC. Logistic regression and artificial neural network-based simple predicting models for obstructive sleep apnea by age, sex, and body mass index. Math Biosci Eng. 2022;19(11):11409–21. https://doi.org/10.3934/mbe.2022532.

Article  PubMed  Google Scholar 

Hsu YC, Wang JD, Huang PH, Chien YW, Chiu CJ, Lin CY. Integrating domain knowledge with machine learning to detect obstructive sleep apnea: Snore as a significant bio-feature. J Sleep Res. 2022;31(2):e13487. https://doi.org/10.1111/jsr.13487.

Article  PubMed  Google Scholar 

Holfinger SJ, Lyons MM, Keenan BT, Mazzotti DR, Mindel J, Maislin G, et al. Diagnostic Performance of Machine Learning-Derived OSA Prediction Tools in Large Clinical and Community-Based Samples. Chest. 2022;161(3):807–17. https://doi.org/10.1016/j.chest.2021.10.023.

Article  PubMed  Google Scholar 

Huang WC, Lee PL, Liu YT, Chiang AA, Lai F. Support vector machine prediction of obstructive sleep apnea in a large-scale Chinese clinical sample. Sleep. 2020;43(7). https://doi.org/10.1093/sleep/zsz295.

Juang CF, Wen CY, Chang KM, Chen YH, Wu MF, Huang WC. Explainable fuzzy neural network with easy-to-obtain physiological features for screening obstructive sleep apnea-hypopnea syndrome. Sleep Med. 2021;85:280–90. https://doi.org/10.1016/j.sleep.2021.07.012.

Article  PubMed  Google Scholar 

He S, Su H, Li Y, Xu W, Wang X, Han D. Detecting obstructive sleep apnea by craniofacial image-based deep learning. Sleep Breath. 2022;26(4):1885–95. https://doi.org/10.1007/s11325-022-02571-9.

Article  PubMed  Google Scholar 

Hanif U, Leary E, Schneider L, Paulsen R, Morse AM, Blackman A, et al. Estimation of Apnea-Hypopnea Index Using Deep Learning On 3-D Craniofacial Scans. IEEE J Biomed Health Inform. 2021;25(11):4185–94. https://doi.org/10.1109/jbhi.2021.3078127.

Comments (0)

No login
gif