American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.
Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14. https://doi.org/10.1093/aje/kws342.
Article PubMed PubMed Central Google Scholar
Redline S, Sotres-Alvarez D, Loredo J, Hall M, Patel SR, Ramos A, et al. Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. Am J Respir Crit Care Med. 2014;189(3):335–44. https://doi.org/10.1164/rccm.201309-1735OC.
Article PubMed PubMed Central Google Scholar
Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–98. https://doi.org/10.1016/S2213-2600(19)30198-5.
Article PubMed PubMed Central Google Scholar
Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52(8):686–717. https://doi.org/10.1016/j.jacc.2008.05.002.
Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84. https://doi.org/10.1056/NEJM200005113421901.
Article CAS PubMed Google Scholar
Sharma S, Culebras A. Sleep apnoea and stroke. Stroke Vasc Neurol. 2016;1(4):185–91. https://doi.org/10.1136/svn-2016-000038.
Article PubMed PubMed Central Google Scholar
Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306(6):613–9. https://doi.org/10.1001/jama.2011.1115.
Article CAS PubMed PubMed Central Google Scholar
Kim HC, Young T, Matthews CG, Weber SM, Woodward AR, Palta M. Sleep-disordered breathing and neuropsychological deficits. A population-based study. Am J Respir Crit Care Med. 1997;156(6):1813–9. https://doi.org/10.1164/ajrccm.156.6.9610026.
Article CAS PubMed Google Scholar
Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31(8):1071–8.
PubMed PubMed Central Google Scholar
Marshall NS, Wong KK, Liu PY, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep. 2008;31(8):1079–85.
PubMed PubMed Central Google Scholar
Ayas NT, FitzGerald JM, Fleetham JA, White DP, Schulzer M, Ryan CF, et al. Cost-effectiveness of continuous positive airway pressure therapy for moderate to severe obstructive sleep apnea/hypopnea. Arch Intern Med. 2006;166(9):977–84. https://doi.org/10.1001/archinte.166.9.977.
Frost and Sullivan. Hidden health crisis costing America billions. Underdiagnosing and undertreating obstructive sleep apnea draining healthcare system. American Academy of Sleep Medicine. 2016. www.aasm.org.
Renganathan V. Overview of artificial neural network models in the biomedical domain. Bratisl Lek Listy. 2019;120(7):536–40. https://doi.org/10.4149/BLL_2019_087.
Article CAS PubMed Google Scholar
Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021;14(1):86–93. https://doi.org/10.1111/cts.12884.
Brennan HL, Kirby SD. Barriers of artificial intelligence implementation in the diagnosis of obstructive sleep apnea. J Otolaryngol Head Neck Surg. 2022;51(1):16. https://doi.org/10.1186/s40463-022-00566-w.
Article PubMed PubMed Central Google Scholar
Nazer LH, Zatarah R, Waldrip S, Ke JXC, Moukheiber M, Khanna AK, et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit Health. 2023;2(6):e0000278. https://doi.org/10.1371/journal.pdig.0000278.
Article PubMed PubMed Central Google Scholar
Tiribelli S, Monnot A, Shah SFH, Arora A, Toong PJ, Kong S. Ethics Principles for Artificial Intelligence-Based Telemedicine for Public Health. Am J Public Health. 2023;113(5):577–84. https://doi.org/10.2105/ajph.2023.307225.
Bandyopadhyay A, Goldstein C. Clinical applications of artificial intelligence in sleep medicine: a sleep clinician’s perspective. Sleep Breath. 2023;27(1):39–55. https://doi.org/10.1007/s11325-022-02592-4.
Westbrook PR, Levendowski DJ, Cvetinovic M, Zavora T, Velimirovic V, Henninger D, et al. Description and validation of the apnea risk evaluation system: a novel method to diagnose sleep apnea-hypopnea in the home. Chest. 2005;128(4):2166–75. https://doi.org/10.1378/chest.128.4.2166.
Ioachimescu OC, Dholakia SA, Venkateshiah SB, Fields B, Samarghandi A, Anand N, et al. Improving the performance of peripheral arterial tonometry-based testing for the diagnosis of obstructive sleep apnea. J Investig Med. 2020;68(8):1370–8. https://doi.org/10.1136/jim-2020-001448.
Article PubMed PubMed Central Google Scholar
Hung CJ, Kang BH, Lin YS, Su HH. Comparison of a home sleep test with in-laboratory polysomnography in the diagnosis of obstructive sleep apnea syndrome. J Chin Med Assoc. 2022;85(7):788–92. https://doi.org/10.1097/jcma.0000000000000741.
Ioachimescu OC, Allam JS, Samarghandi A, Anand N, Fields BG, Dholakia SA, et al. Performance of peripheral arterial tonometry-based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort. J Clin Sleep Med. 2020;16(10):1663–74. https://doi.org/10.5664/jcsm.8620.
Article PubMed PubMed Central Google Scholar
Zhang L, Yan YR, Li SQ, Li HP, Lin YN, Li N, et al. Moderate to severe OSA screening based on support vector machine of the Chinese population faciocervical measurements dataset: a cross-sectional study. BMJ Open. 2021;11(9):e048482. https://doi.org/10.1136/bmjopen-2020-048482.
Article PubMed PubMed Central Google Scholar
Kuan YC, Hong CT, Chen PC, Liu WT, Chung CC. Logistic regression and artificial neural network-based simple predicting models for obstructive sleep apnea by age, sex, and body mass index. Math Biosci Eng. 2022;19(11):11409–21. https://doi.org/10.3934/mbe.2022532.
Hsu YC, Wang JD, Huang PH, Chien YW, Chiu CJ, Lin CY. Integrating domain knowledge with machine learning to detect obstructive sleep apnea: Snore as a significant bio-feature. J Sleep Res. 2022;31(2):e13487. https://doi.org/10.1111/jsr.13487.
Holfinger SJ, Lyons MM, Keenan BT, Mazzotti DR, Mindel J, Maislin G, et al. Diagnostic Performance of Machine Learning-Derived OSA Prediction Tools in Large Clinical and Community-Based Samples. Chest. 2022;161(3):807–17. https://doi.org/10.1016/j.chest.2021.10.023.
Huang WC, Lee PL, Liu YT, Chiang AA, Lai F. Support vector machine prediction of obstructive sleep apnea in a large-scale Chinese clinical sample. Sleep. 2020;43(7). https://doi.org/10.1093/sleep/zsz295.
Juang CF, Wen CY, Chang KM, Chen YH, Wu MF, Huang WC. Explainable fuzzy neural network with easy-to-obtain physiological features for screening obstructive sleep apnea-hypopnea syndrome. Sleep Med. 2021;85:280–90. https://doi.org/10.1016/j.sleep.2021.07.012.
He S, Su H, Li Y, Xu W, Wang X, Han D. Detecting obstructive sleep apnea by craniofacial image-based deep learning. Sleep Breath. 2022;26(4):1885–95. https://doi.org/10.1007/s11325-022-02571-9.
Hanif U, Leary E, Schneider L, Paulsen R, Morse AM, Blackman A, et al. Estimation of Apnea-Hypopnea Index Using Deep Learning On 3-D Craniofacial Scans. IEEE J Biomed Health Inform. 2021;25(11):4185–94. https://doi.org/10.1109/jbhi.2021.3078127.
Comments (0)