Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG

Asadzadeh S, Rezaii TY, Beheshti S, Delpak A, Meshgini S (2020) A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities. J Neurosci Methods 339:108740. https://doi.org/10.1016/j.jneumeth.2020.108740

Article  CAS  PubMed  Google Scholar 

Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, Basilisco A, Rossini P, Ding L, Ni Y, Cheng J, Christine K, Sweeney J, He B (2005) Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. NeuroImage 24(1):118–131. https://doi.org/10.1016/j.neuroimage.2004.09.036

Article  CAS  PubMed  Google Scholar 

Becker H, Alber L, Comon P, Gribonval R, Wendling F, Merlet I (2015) Brain-source imaging: from sparse to tensor models. IEEE Signal Process Mag 32(6):100–112. https://doi.org/10.1109/MSP.2015.2413711

Article  Google Scholar 

Bore JC, Li P, Jiang L, Ayedh WMA, Chen C, Harmah DJ, Yao D, Cao Z, Xu P (2021) A long short-term memory network for sparse spatiotemporal EEG source imaging. IEEE Trans Med Imaging 40(12):3787–3800. https://doi.org/10.1109/TMI.2021.3097758

Article  PubMed  Google Scholar 

Cioppa LD, Tartaglione M, Pascarella A, Pitolli F (2024) Solution of the EEG inverse problem by random dipole sampling. Inverse Probl 40(2):025006. https://doi.org/10.1088/1361-6420/ad14a1

Article  Google Scholar 

Forss N, Hari R, Salmelin R, Ahonen A, Hämäläinen M, Kajola M, Knuutila J, Simola J (1994) Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res 99:309–315. https://doi.org/10.1007/BF00239597

Article  CAS  PubMed  Google Scholar 

Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Barreto NT, Henson R, Flandin G, Mattout J (2008) Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39(3): 1104–1120. https://doi.org/10.1016/j.neuroimage.2007.09.048

Fuchs M, Kastner J, Tech R, Wagner M, Gasca F (2017) MEG and EEG dipole clusters from extended cortical sources. Biomed Eng Lett 7:185–191. https://doi.org/10.1007/s13534-017-0019-2

Article  PubMed  PubMed Central  Google Scholar 

Gao S, Wang Y, Gao X, Hong B (2014) Visual and auditory brain–computer interfaces. IEEE Trans Biomed Eng 61(5):1436–1447. https://doi.org/10.1109/TBME.2014.2300164

Article  PubMed  Google Scholar 

Gross DW, Dubeau F, Quesney LF, Gotman J (2000) EEG Telemetry with closely Spaced electrodes in Frontal Lobe Epilepsy. J Clin Neurophysiol 17(4):414–418. https://doi.org/10.1097/00004691-200007000-00007

Article  CAS  PubMed  Google Scholar 

He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T (1987) Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans Bio Med Eng 34(6):406–414. https://doi.org/10.1109/TBME.1987.326056

Article  CAS  Google Scholar 

He B, Sohrabpour A, Brown E, Liu Z (2018) Electrophysiological source imaging: a noninvasive window to Brain Dynamics. Annu Rev Biomed Eng 20:171–196. https://doi.org/10.1146/annurev-bioeng-062117-120853

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hestrin S, Armstrong WE (1996) Morphology and Physiology of Cortical Neurons in Layer I. The Journal of Neuroscience 16(17):5290-5300. https://doi.org/10.1523/JNEUROSCI.16-17-05290.1996

Hirata A, Niitsu M, Phang CR, Kodera S, Kida T, Rashed EA, Fukunaga M, Sadato N, Wasaka T (2024) High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting. Phys Med Biol 69(5):055013. https://doi.org/10.1088/1361-6560/ad25c3

Article  Google Scholar 

Hu J, Shen L, Sun G (2018) Squeeze-and-Excitation Networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 7132-7141. IEEE, Salt Lake City, UT, USA. https://doi.org/10.1109/CVPR.2018.00745

Jaiswal A, Nenonen J, Stenroos M, Gramfort A, Dalal SS, Westner BU, Litvak V, Mosher JC, Schoffelen JM, Witton C, Oostenveld R, Parkkonen L (2020) Comparison of beamformer implementations for MEG source localization. NeuroImage 216:116797. https://doi.org/10.1016/j.neuroimage.2020.116797

Li J, Wang Q (2023) Comparison of the representational ability in individual difference analysis using 2-D time-series image and time-series feature patterns. Expert Syst Appl 215:119429. https://doi.org/10.1016/j.eswa.2022.119429

Article  Google Scholar 

Liu C, Ye FQ, Yen CCC, Newman JD, Glen D, Leopold DA, Silva AC (2018) A digital 3D atlas of the marmoset brain based on multi-modal MRI. NeuroImage 169:106–116. https://doi.org/10.1016/j.neuroimage.2017.12.004

Majumdar K (2009) Constraining Minimum-Norm Inverse by Phase synchronization and Signal Power of the Scalp EEG channels. IEEE Trans Biomed Eng 56(4):1228–1235. https://doi.org/10.1109/TBME.2008.2008637

Article  PubMed  Google Scholar 

Marqui RDP, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18(1):49–65. https://doi.org/10.1016/0167-8760(84)90014-X

Article  Google Scholar 

Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, de Peralta RG (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222. https://doi.org/10.1016/j.clinph.2004.06.001

Article  PubMed  Google Scholar 

Min BK, Hämäläinen MS, Pantazis D (2020) New cognitive neurotechnology facilitates studies of cortical–subcortical interactions. Trends Biotechnol 38(9):952–962. https://doi.org/10.1016/j.tibtech.2020.03.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nejad YS, Beheshti S (2021) Efficient high resolution sLORETA in brain source localization. J Neural Eng 18:016013. https://doi.org/10.1088/1741-2552/abcc48

Article  Google Scholar 

Pantazis D, Adler A (2021) MEG Source localization via deep learning. Sensors 21(13):4278. https://doi.org/10.3390/s21134278

Article  PubMed  PubMed Central  Google Scholar 

Phillips JM, Fish LR, Kambi NA, Redinbaugh MJ, Mohanta S, Kecskemeti SR, Saalmann YB (2019) Topographic organization of connections between prefrontal cortex and mediodorsal thalamus: evidence for a general principle of indirect thalamic pathways between directly connected cortical areas. NeuroImage 189:832–846. https://doi.org/10.1016/j.neuroimage.2019.01.078

Article  PubMed  Google Scholar 

Pion L (2019) Furthering the automation of electroencephalographic source analysis. Dissertation, University of California San Diego

Scherg M, Cramon DV (1986) Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol Evoked Potentials Sect 65(5):344–360. https://doi.org/10.1016/0168-5597(86)90014-6

Article  CAS  Google Scholar 

Seeber M, Cantonas LM, Hoevels M, Sesia T, Visser VV, Michel CM (2019) Subcortical electrophysiological activity is detectable with high-density EEG source imaging. Nat Commun 10:753. https://doi.org/10.1038/s41467-019-08725-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shadlen MN, Newsome WT (1998) The Variable Discharge of Cortical Neurons: Implications for Connectivity Computation and Information Coding. The Journal of Neuroscience 18(10):3870-3896 https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998

Sharma P, Scherg M, Pinborg LH, Fabricius M, Rubboli G, Pedersen B, Leffers AM, Uldall P, Jespersen B, Brennum J, Henriksen OM, Beniczky S (2018) Ictal and interictal electric source imaging in pre-surgical evaluation: a prospective study. Eur J Neurol 25(9):1154–1160. https://doi.org/10.1111/ene.13676

Article  CAS  PubMed  Google Scholar 

Škoch A, Rehák BB, Mareš J, Tintěra J, Sanda P, Jajcay L, Horáček J, Španiel F, Hlinka J (2022) Human brain structural connectivity matrices–ready for modelling. Sci Data 9:486. https://doi.org/10.1038/s41597-022-01596-9

Article  PubMed  PubMed Central  Google Scholar 

Stropahl M, Bauer AR, Debener S, Bleichner MG (2018) Source-modeling auditory processes of EEG Data using EEGLAB and brainstorm. Front NeuroSci 12:309. https://doi.org/10.3389/fnins.2018.00309

Article  PubMed  PubMed Central  Google Scholar 

Sun R, Sohrabpour A, Worrell GA, He B (2022) Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics. Proc Nat Acad Sci 119(31):e2201128119. https://doi.org/10.1073/pnas.2201128119

Veena N, Anitha N (2020) A review of non-invasive BCI devices. Int J BioMed Eng Technol 34(3):205–233. https://doi.org/10.1504/IJBET.2020.111471

Article  Google Scholar 

Xing X, Li Z, Xu T, Shu L, Hu B, Xu X (2019) SAE + LSTM: a New Framework for emotion Recognition from Multi-channel EEG. Front Neurorobotics 13:37. https://doi.org/10.3389/fnbot.2019.00037

Article  Google Scholar 

Comments (0)

No login
gif