Simultaneous estimation of lupeol, stigmasterol and betulin in Desmodium oojeinensis bark and roots by a validated instrumental thin-layer chromatography method

Kirtikar KR, Basu BD (1998) Indian medicinal plants, vol I. International Book Distributors, Dehradun

Google Scholar 

Gunasekaran R, Usha M, Arunachalam G (2011) Pharmacognostical and phytochemical evaluation of Ougeinia oojeinensis (Roxb.) Hochr. bark. Int J Pharm Sci Res 2(3):706–712. https://doi.org/10.13040/IJPSR.0975-8232

Article  Google Scholar 

Orwa C, Mutua A, Kindt R, et al (2009) Agroforestree database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya. http://worldagroforestry.org/output/agroforestree-database

Anand U, Tudu CK, Nandy S et al (2022) Ethnodermatological use of medicinal plants in India: from ayurvedic formulations to clinical perspectives—a review. J Ethnopharmacol 284:114744. https://doi.org/10.1016/j.jep.2021.114744

Article  CAS  PubMed  Google Scholar 

Patel MR, Rajput N, Panchal HS et al (2016) Pharmacognostic and phytochemical evaluation of Ougeinia dalbergioides Bark. Int Res J Pharm 7(7):50–53. https://doi.org/10.7897/2230-8407.07784

Article  CAS  Google Scholar 

Gupta A, Nagariya AK, Mishra AK et al (2010) Ethno-potential of medicinal herbs in skin diseases: an overview. J Pharm Res 3:435–441

Google Scholar 

Prajapati ND, Purohit SS, Sharma AK, Kumar T (2003) A handbook of medicinal plants: a complete source. Agrobios India, Jodhpur

Google Scholar 

Faraoq S (2005) 555 Medicinal Plants: field and laboratory manual. International Book Distributors, Dehradun

Google Scholar 

Nadkarni K, Nadkarni AK (1976) Indian Materia Medica. Popular Prakashan, Bombay

Google Scholar 

Nirawane RB, Gurav AM, Rao G et al (2017) Pharmacognostic evaluation of Desmodium oojeinense (Roxb.) H. Ohashi-stem bark. J Ayu Med Sci 2(4):261–268. https://doi.org/10.5530/jams.2017.2.33

Article  Google Scholar 

Karole S, Jain DK, Abbas S et al (2022) Antioxidant and hepatoprotective effects of Ougeinia dalbergioides Benth. against paracetamol and CCl4 induced liver damage in rats. Indian J Pharm Pharmacol 9(1):67–74. https://doi.org/10.18231/j.ijpp.2022.012

Article  Google Scholar 

Khare CP (2004) Indian herbal remedies: rational western therapy, ayurvedic, and other traditional usage, botany. Springer, Berlin

Book  Google Scholar 

Velmurugan C, Sundaram T, Sampath Kumar R et al (2011) Antidiabetic and hypolipidemic activity of bark of ethanolic extract of Ougeinia oojeinensis (Roxb.). Med J Malaysia 66(1):22–26

CAS  PubMed  Google Scholar 

Tiwari A, Patel A, Shrivastava S et al (2020) Comprehensive review on phytochemistry, ethnobotanical, bioactivities and medicinal mysteries of Ougeinia oojeinensis (Roxb.) Hochr. Pharm Biosci J 8(2):29–34. https://doi.org/10.20510/ukjpb/8/i2/1586230488

Article  Google Scholar 

Jayadevaiah KV, Ishwar Bhat K, Joshi AB et al (2011) In-vitro anti-oxidant activity of Desmodium oojeinense (Roxb.) H. Pharmacol Online 3:1119–1126

Google Scholar 

Sahu RK, Sharma U, Roy A et al (2008) The antioxidant effect of ethanolic bark extract of Ougeinia oojeinensis (Roxb.) Hochr on CCl4 induced liver damage. Biosci Biotechnol Res Asia 5(2):783–787

CAS  Google Scholar 

Sharma PR (1996) Classical uses of medicinal plants. Chavkhambha Bharathi Academy, Varanasi

Google Scholar 

Yoganarasimhan SN (2000) Medicinal plants of India, vol 2. Regional Research Institute, Bangalore

Google Scholar 

https://www.flowersofindia.net/catalog/slides/Ujjain%20Desmodium%20Tree.html

Patel MR, Rajput N, Panchal HS et al (2017) Quantification of lupeol and betulin in Ougenia Dalbergioides bark by column chromatography and TLC. J Pharm Sci Biosci Res 7(1):114–120

Google Scholar 

Yadav A, Dubey B, Manigauha A (2019) Evaluation of hepatoprotective and antioxidant activity of isolated flavonoids compounds from Ougeinia oojeinensis extracts. J Chem Pharm Sci 12(4):143–147. https://doi.org/10.30558/jchps.20191204007

Article  CAS  Google Scholar 

Balakrishna S, Ramanathan JD, Seshadri TR et al (1962) Special chemical components of the heartwood of Ougeinia dalbergioides Linn. Proc R Soc Lond A 268(1332):1–20. https://doi.org/10.1098/rspa.1962.0120

Article  CAS  Google Scholar 

Ghosh AC, Dutta NL (1965) Chemical investigation of Ougeinia dalbergioides Benth. J Indian Chem Soc 42(12):831–835. https://doi.org/10.5281/zenodo.6507190

Article  CAS  Google Scholar 

Bala S, Uniyal GC (2002) High-performance liquid chromatographic analysis of genistein and other isoflavonoids from heartwood of Ougeinia dalbergioides. Phytochem Anal 13(4):211–214. https://doi.org/10.1002/pca.646

Article  CAS  PubMed  Google Scholar 

Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–369. https://doi.org/10.1038/nrc2129

Article  CAS  PubMed  Google Scholar 

Zhang J, Hu X, Zheng G et al (2021) In vitro and in vivo antitumor effects of lupeol-loaded galactosylated liposomes. Drug Deliv 28(1):709–718. https://doi.org/10.1080/10717544.2021.1905749

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang S, Mo C, Zeng T et al (2021) Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging 13(5):6592–6605. https://doi.org/10.18632/aging.202409

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285(2):109–115. https://doi.org/10.1016/j.canlet.2009.04.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Javed Hashmi W, Ismail H, Mehmood F et al (2008) Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and lupeol against STZ + AlCl3 induced rats model. Daru 26(2):179–190. https://doi.org/10.1007/s40199-018-0223-3

Article  CAS  Google Scholar 

Günther A, Makuch E, Nowak A et al (2021) Enhancement of the antioxidant and skin permeation properties of betulin and its derivatives. Molecules 26(11):3435. https://doi.org/10.3390/molecules26113435

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfarr K, Danciu C, Arlt O et al (2015) Simultaneous and dose dependent melanoma cytotoxic and immune stimulatory activity of betulin. PLoS ONE 10(3):e0118802. https://doi.org/10.1371/journal.pone.0118802

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anaya-Eugenio GD, Eggers NA, Ren Y et al (2020) Apoptosis induced by (+)-betulin through NF-κB inhibition in MDAMB-231 breast cancer cells. Anticancer Res 40(12):6637–6647. https://doi.org/10.21873/anticanres.14688

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur P, Arora S, Singh R (2022) Isolation, characterization and biological activities of betulin from Acacia nilotica bark. Sci Rep 12:9370. https://doi.org/10.1038/s41598-022-13338-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh S, Kumar A, Sachan N et al (2022) Evaluation of the antidepressant-like effect of total sterols fraction and stigmasterol isolated from leaves of Aegle marmelos and possible mechanism(s) of action involved. Curr Drug Discov Technol 19(2):e290721195144. https://doi.org/10.2174/1570163818666210729165310

Article  CAS  PubMed  Google Scholar 

Kim YS, Li XF, Kang KH et al (2014) Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. BMB Rep 47(8):433–38. https://doi.org/10.5483/bmbrep.2014.47.8.153

Article  PubMed  PubMed Central  Google Scholar 

Zhao CH, Zhao C, Ye HQ et al (2019) Hypolipidemic activity of low-cholesterol ovum oil of Rana chensinensis and phytosterol (stigmasterol) in rats. J Zhejiang Univ Sci B 20(7):613–616. https://doi.org/10.1631/jzus.B1900018

Article  PubMed  PubMed Central  Google Scholar 

Panda S, Jafri M, Kar A et al (2009) Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia 80(2):123–126. https://doi.org/10.1016/j.fitote.2008.12.002

Article  CAS  PubMed  Google Scholar 

Morgan LV, Petry F, Scatolin M et al (2021) Investigation of the anti-inflammatory effects of stigmasterol in mice: insight into its mechanism of action. Behav Pharmacol 32(8):640–651. https://doi.org/10.1097/FBP.0000000000000658

Article  CAS  PubMed  Google Scholar 

Nazemi M, Khaledi M, Golshan M et al (2020) Cytotoxicity activity and druggability studies of sigmasterol isolated from marine sponge Dysidea avara against oral epithelial cancer cell (KB/C152) and T-lymphocytic leukemia cell line (Jurkat/ E6–1). Asian Pac J Cancer Prev 21(4):997–1003. https://doi.org/10.31557/APJCP.2020.21.4.997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakrim S, Benkhaira N, Bourais I et al (2022) Health benefits and pharmacological properties of stigmasterol. Antioxidants (Basel) 11(10):1912. https://doi.org/10.3390/antiox11101912

Article  CAS  PubMed  Google Scholar 

Wankhade MS, Mulani RM (2015) Chromatography finger print profiling and phytochemical investigation on leaf and bark methanolic extract of Ougeinia oojeinensis (Roxb.) Hochr. Int J Curr Res 7(2):12665–12673

Google Scholar 

ICH, Q2(R1) (1996) Validation of analytical procedure: methodology. In: Proceeding of the international conference on harmonization, Geneva. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf

Takale N, Kothawale T, Ghule B et al (2023) Isolation, identification, and quantification of stigmasterol in Hygrophila schulli plant by a validated high-performance thin-layer chromatography-densitometric method. J Planar Chromat 36:223–235. https://doi.org/10.1007/s00764-023-00252-1

Comments (0)

No login
gif