Neuroinflammation and the role of epigenetic-based therapies for Huntington’s disease management: the new paradigm

Abdanipour A, Schluesener HJ, Tiraihi T (2012) Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 16(2):90–100

CAS  PubMed  PubMed Central  Google Scholar 

Arthur R, Navik U, Kumar P (2022) Repurposing artemisinins as neuroprotective agents: a focus on the PI3k/Akt signalling pathway. Naunyn Schmiedebergs Arch Pharmacol 396(4):593–605

Article  PubMed  Google Scholar 

Athira KV, Sadanandan P, Chakravarty S (2021) Repurposing vorinostat for the treatment of disorders affecting brain. Neuromolecular Med 23(4):449–465

Article  CAS  PubMed  Google Scholar 

Ban JJ et al (2017) MicroRNA-27a reduces mutant huntingtin aggregation in an in vitro model of Huntington’s disease. Biochem Biophys Res Commun 488(2):316–321

Article  CAS  PubMed  Google Scholar 

Bassi S et al (2017) Epigenetics of Huntington’s disease. Adv Exp Med Biol 978:277–299

Article  CAS  PubMed  Google Scholar 

Berson A et al (2018) Epigenetic regulation in neurodegenerative diseases. Trends Neurosci 41(9):587–598

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biagioli M et al (2015) Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. Hum Mol Genet 24(9):2442–2457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breiling A, Lyko F (2015) Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8:24

Article  PubMed  PubMed Central  Google Scholar 

Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

Article  CAS  PubMed  Google Scholar 

Caron NS, Dorsey ER, Hayden MR (2018) Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov 17(10):729–750

Article  CAS  PubMed  Google Scholar 

Chang KH, Wu YR, Chen CM (2017) Down-regulation of miR-9* in the peripheral leukocytes of Huntington’s disease patients. Orphanet J Rare Dis 12(1):185

Article  PubMed  PubMed Central  Google Scholar 

Cheng PH et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93(2):306–312

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheray M, Joseph B (2018) Epigenetics control microglia plasticity. Front Cell Neurosci 12:243

Article  PubMed  PubMed Central  Google Scholar 

Chouliaras L et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90(4):498–510

Article  CAS  PubMed  Google Scholar 

Das S, Bhattacharyya NP (2015) Heat shock factor 1-regulated miRNAs can target huntingtin and suppress aggregates of mutant huntingtin. Microrna 4(3):185–193

Article  CAS  PubMed  Google Scholar 

Das E, Jana NR, Bhattacharyya NP (2015) Delayed cell cycle progression in STHdh(Q111)/Hdh(Q111) cells, a cell model for Huntington’s disease mediated by microRNA-19a, microRNA-146a and microRNA-432. Microrna 4(2):86–100

Article  CAS  PubMed  Google Scholar 

De Souza RA et al (2016) DNA methylation profiling in human Huntington’s disease brain. Hum Mol Genet 25(10):2013–2030

Article  PubMed  Google Scholar 

Díez-Planelles C et al (2016) Circulating microRNAs in Huntington’s disease: emerging mediators in metabolic impairment. Pharmacol Res 108:102–110

Article  PubMed  Google Scholar 

Dompierre JP et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27(13):3571–3583

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong X, Cong S (2021) MicroRNAs in Huntington’s disease: diagnostic biomarkers or therapeutic agents? Front Cell Neurosci 15:705348

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebbel EN et al (2010) Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry. Anal Biochem 399(2):152–161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faragó A et al (2022) Acetylation state of lysine 14 of histone H33 affects mutant huntingtin induced pathogenesis. Int J Mol Sci 23(23):15173

Article  PubMed  PubMed Central  Google Scholar 

Feng J et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrante RJ et al (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J Neurosci 24(46):10335–10342

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardian G et al (2005) Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington’s disease. J Biol Chem 280(1):556–563

Article  CAS  PubMed  Google Scholar 

Ghosh P, Saadat A (2021) Neurodegeneration and epigenetics: a review. Neurologia (Engl Ed)

Ghosh R, Tabrizi SJ (2018) Clinical features of Huntington’s disease. Adv Exp Med Biol 1049:1–28

Article  CAS  PubMed  Google Scholar 

Glajch KE, Sadri-Vakili G (2015) Epigenetic mechanisms involved in Huntington’s disease pathogenesis. J Huntingtons Dis 4(1):1–15

Article  CAS  PubMed  Google Scholar 

Gray SG (2010) Targeting histone deacetylases for the treatment of Huntington’s disease. CNS Neurosci Ther 16(6):348–361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedes-Dias P et al (2015) HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta 1852(11):2484–2493

Article  CAS  PubMed  Google Scholar 

Guo JU et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14(10):1345–1351

Article  CAS  PubMed  PubMed Central  Google Scholar 

Her LS et al (2017) miR-196a enhances neuronal morphology through suppressing RANBP10 to provide neuroprotection in Huntington’s disease. Theranostics 7(9):2452–2462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horvath S et al (2016) Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY) 8(7):1485–1512

Article  CAS  PubMed  Google Scholar 

Hur K et al (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63(4):635–646

Article  CAS  PubMed  Google Scholar 

Hyeon JW, Kim AH, Yano H (2021) Epigenetic regulation in Huntington’s disease. Neurochem Int 148:105074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Igarashi S et al (2003) Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. NeuroReport 14(4):565–568

Article  CAS  PubMed  Google Scholar 

Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82

Article  CAS  PubMed  Google Scholar 

Jia H et al (2015) HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 112(1):E56–E64

Article  CAS  PubMed 

Comments (0)

No login
gif