McGlynn, S. E. et al. Hydrogenation reactions of carbon on Earth: linking methane, margarine, and life. Am. Mineral. 105, 599–608 (2020).
Kubas, G. J. Chemistry of saturated molecules. Proc. Natl Acad. Sci. USA 104, 6901–6907 (2007).
Article CAS PubMed PubMed Central Google Scholar
Kubas, G. J. Catalytic processes involving dihydrogen complexes and other sigma-bond complexes. Catal. Lett. 104, 79–101 (2005).
Crabtree, R. H. Dihydrogen complexation. Chem. Rev. 116, 8750–8769 (2016).
Article CAS PubMed Google Scholar
Hale, D. J., Ferguson, M. J. & Turculet, L. (PSiP)Ni-catalyzed (E)-selective semihydrogenation of alkynes with molecular hydrogen. ACS Catal. 12, 146–155 (2021).
Kubas, G. J. Activation of dihydrogen and coordination of molecular H2 on transition metals. J. Organomet. Chem. 751, 33–49 (2014).
Kubas, G. J. Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. J. Organomet. Chem. 635, 37–68 (2001).
Kubas, G. J. Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107, 4152–4205 (2007).
Article CAS PubMed Google Scholar
Vollmer, M. V., Xie, J. & Lu, C. C. Stable dihydrogen complexes of cobalt(–I) suggest an inverse trans-influence of Lewis acidic group 13 metalloligands. J. Am. Chem. Soc. 139, 6570–6573 (2017).
Article CAS PubMed Google Scholar
Jessop, P. G. & Morris, R. H. Reactions of transition metal dihydrogen complexes. Coord. Chem. Rev. 121, 155–284 (1992).
Alig, L., Fritz, M. & Schneider, S. First-row transition metal (de)hydrogenation catalysis based on functional pincer ligands. Chem. Rev. 119, 2681–2751 (2019).
Article CAS PubMed Google Scholar
Manar, K. K. & Ren, P. in Advances in Organometallic Chemistry Vol. 76 (Elsevier Inc., 2021).
Karunananda, M. K. & Mankad, N. P. Cooperative strategies for catalytic hydrogenation of unsaturated hydrocarbons. ACS Catal. 7, 6110–6119 (2017).
Grotjahn, D. B. Bifunctional organometallic catalysts involving proton transfer or hydrogen bonding. Chem. Eur. J. 11, 7146–7153 (2005).
Article CAS PubMed Google Scholar
Tiddens, M. R. & Moret, M.-E. Top. Organomet. Chem. 68, 25–69 (2021).
Elsby, M. R. & Baker, R. T. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 49, 8933–8987 (2020).
Article CAS PubMed Google Scholar
Milstein, D. Metal–ligand cooperation by aromatization–dearomatization as a tool in single bond activation. Philos. Trans. R. Soc. A 373, 20140189 (2015).
Van Der Vlugt, J. I. Cooperative catalysis with first-row late transition metals. Eur. J. Inorg. Chem. 2012, 363–375 (2012).
Grützmacher, H. Cooperating ligands in catalysis. Angew. Chem. Int. Ed. 47, 1814–1818 (2008).
He, T. et al. Mechanism of heterolysis of H2 by an unsaturated d8 nickel center: via tetravalent nickel. J. Am. Chem. Soc. 132, 910–911 (2010).
Article CAS PubMed Google Scholar
Schneider, S., Meiners, J. & Askevold, B. Cooperative aliphatic PNP amido pincer ligands-versatile building blocks for coordination chemistry and catalysis. Eur. J. Inorg. Chem. 2012, 412–429 (2012).
Harman, W. H. & Peters, J. C. Reversible H2 addition across a nickel-borane unit as a promising strategy for catalysis. J. Am. Chem. Soc. 134, 5080–5082 (2012).
Article CAS PubMed Google Scholar
Harman, W. H., Lin, T. P. & Peters, J. C. A d10 Ni–(H2) adduct as an intermediate in H–H oxidative addition across a Ni–B bond. Angew. Chem. Int. Ed. 53, 1081–1086 (2014).
Karunananda, M. K. & Mankad, N. P. E-selective semi-hydrogenation of alkynes by heterobimetallic catalysis. J. Am. Chem. Soc. 137, 14598–14601 (2015).
Article CAS PubMed Google Scholar
Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergamini, P. J. & Wasserman, H. J. Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2). J. Am. Chem. Soc. 106, 451–452 (1984).
Bianchini, C. et al. Selective hydrogenation of 1-alkynes to alkenes catalyzed by an iron(II) cis-hydride η2-dihydrogen complex. A case of intramolecular reaction between η2-H2 and-σ-vinyl ligands. Organometallics 11, 138–145 (1992).
Thomas, A., Haake, M., Grevels, F. ‐W. & Bargon, J. In situ NMR investigations of photocatalyzed hydrogenations with parahydrogen in the presence of metal carbonyl compounds of group 6. Angew. Chem. Int. Ed. 33, 755–757 (1994).
Joshi, A. M., MacFarlane, K. S. & James, B. R. Kinetics and mechanism of H2-hydrogenation of styrene catalyzed by [RuCl(dppb) (μ-Cl)]2 (dppb = 1,4-bis(dipphenylphosphino)butane). Evidence for hydrogen transfer from a dinuclear molecular hydrogen species. J. Organomet. Chem. 488, 161–167 (1995). .
Kirss, R. U., Eisenschmid, T. C. & Eisenberg, R. Para-hydrogen induced polarization in hydrogenation reactions catalyzed by ruthenium-phosphine complexes. J. Am. Chem. Soc. 110, 8564–8566 (1988).
Jia, G., Ng, W. S. & Lau, C. P. Dihydrogen complex formation and C–C bond cleavage from protonation of Cp*RuH(diene) complexes. Organometallics 17, 4538–4540 (1998).
Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes (Springer, 2001); https://doi.org/10.1007/b113929
Vigalok, A., Kraatz, H., Konstantinovsky, L. & Milstein, D. Evidence for direct trans insertion in a hydrido–olefin rhodium complex—free nitrogen as a trap in a migratory insertion process. Chem. Eur. J 3, 253–260 (1997).
Article CAS PubMed Google Scholar
Polukeev, A. V. & Wendt, O. F. Iridium pincer complexes with an olefin backbone. Organometallics 34, 4262–4271 (2015).
Polukeev, A. V. & Wendt, O. F. Iridium complexes with aliphatic, non-innocent pincer ligands. J. Organomet. Chem. 867, 33–50 (2018).
Verhoeven, D. G. A. & Moret, M. E. Metal-ligand cooperation at tethered π-ligands. Dalton Trans. 45, 15762–15778 (2016).
Article CAS PubMed Google Scholar
Comanescu, C. C., Vyushkova, M. & Iluc, V. M. Palladium carbene complexes as persistent radicals. Chem. Sci. 6, 4570–4579 (2015).
Article CAS PubMed PubMed Central Google Scholar
Barrett, B. J. & Iluc, V. M. An adaptable chelating diphosphine ligand for the stabilization of palladium and platinum carbenes. Organometallics 36, 730–741 (2017).
Barrett, B. J. & Iluc, V. M. Group 10 metal complexes supported by pincer ligands with an olefinic backbone. Organometallics 33, 2565–2574 (2014).
Barrett, B. J. & Iluc, V. M. Coordination of a hemilabile pincer ligand with an olefinic backbone to mid-to-late transition metals. Inorg. Chem. 53, 7248–7259 (2014).
Article CAS PubMed Google Scholar
Breitenfeld, J., Vechorkin, O., Corminboeuf, C., Scopelliti, R. & Hu, X. Why are (NN2)Ni pincer complexes active for alkyl–alkyl coupling: β-H elimination is kinetically accessible but thermodynamically uphill. Organometallics 29, 3686–3689 (2010).
Crabtree, R. H. The Organometallic Chemistry of the Transition Metals (John Wiley & Sons, 2014); https://doi.org/10.1002/9781118788301
Michaliszyn, K., Smirnova, E. S., Bucci, A., Martin‐Diaconescu, V. & Lloret Fillol, J. Well‐defined nickel P3C complexes as hydrogenation catalysts of N‐heteroarenes under mild conditions. ChemCatChem 14, e202200039 (2022).
Guihaumé, J., Halbert, S., Eisenstein, O. & Perutz, R. N. Hydrofluoroarylation of alkynes with Ni catalysts. C–H activation via ligand-to-ligand hydrogen transfer, an alternative to oxidative addition. Organometallics 31, 1300–1314 (2012).
Perutz, R. N., Sabo-Etienne, S. & Weller, A. S. Metathesis by partner interchange in σ-bond ligands: expanding applications of the σ-CAM mechanism. Angew. Chem. Int. Ed. 61, e202111462 (2022).
Tang, S., Eisenstein, O., Nakao, Y. & Sakaki, S. Aromatic C–H σ-bond activation by Ni0, Pd0 and Pt0 alkene complexes: concerted oxidative addition to metal vs ligand-to-ligand H transfer mechanism. Organometallics 36, 2761–2771 (2017).
Perutz, R. N. & Sabo-Etienne, S. The σ-CAM mechanism: σ complexes as the basis of σ-bond metathesis at late-transition-metal centers. Angew. Chem. Int. Ed. 46, 2578–2592 (2007).
Murugesan, K. et al. Nickel-catalyzed stereodivergent synthesis of E- and Z-alkenes by hydrogenation of alkynes. ChemSusChem 12, 3363–3369 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ramirez, B. L. & Lu, C. C. Rare-earth supported nickel catalysts for alkyne semihydrogenation: chemo- and regioselectivity impacted by the Lewis acidity and size of the support.
Comments (0)