Cooperative H2 activation at a nickel(0)–olefin centre

McGlynn, S. E. et al. Hydrogenation reactions of carbon on Earth: linking methane, margarine, and life. Am. Mineral. 105, 599–608 (2020).

Article  Google Scholar 

Kubas, G. J. Chemistry of saturated molecules. Proc. Natl Acad. Sci. USA 104, 6901–6907 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kubas, G. J. Catalytic processes involving dihydrogen complexes and other sigma-bond complexes. Catal. Lett. 104, 79–101 (2005).

Article  CAS  Google Scholar 

Crabtree, R. H. Dihydrogen complexation. Chem. Rev. 116, 8750–8769 (2016).

Article  CAS  PubMed  Google Scholar 

Hale, D. J., Ferguson, M. J. & Turculet, L. (PSiP)Ni-catalyzed (E)-selective semihydrogenation of alkynes with molecular hydrogen. ACS Catal. 12, 146–155 (2021).

Kubas, G. J. Activation of dihydrogen and coordination of molecular H2 on transition metals. J. Organomet. Chem. 751, 33–49 (2014).

Article  CAS  Google Scholar 

Kubas, G. J. Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. J. Organomet. Chem. 635, 37–68 (2001).

Article  CAS  Google Scholar 

Kubas, G. J. Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107, 4152–4205 (2007).

Article  CAS  PubMed  Google Scholar 

Vollmer, M. V., Xie, J. & Lu, C. C. Stable dihydrogen complexes of cobalt(–I) suggest an inverse trans-influence of Lewis acidic group 13 metalloligands. J. Am. Chem. Soc. 139, 6570–6573 (2017).

Article  CAS  PubMed  Google Scholar 

Jessop, P. G. & Morris, R. H. Reactions of transition metal dihydrogen complexes. Coord. Chem. Rev. 121, 155–284 (1992).

Article  CAS  Google Scholar 

Alig, L., Fritz, M. & Schneider, S. First-row transition metal (de)hydrogenation catalysis based on functional pincer ligands. Chem. Rev. 119, 2681–2751 (2019).

Article  CAS  PubMed  Google Scholar 

Manar, K. K. & Ren, P. in Advances in Organometallic Chemistry Vol. 76 (Elsevier Inc., 2021).

Karunananda, M. K. & Mankad, N. P. Cooperative strategies for catalytic hydrogenation of unsaturated hydrocarbons. ACS Catal. 7, 6110–6119 (2017).

Article  CAS  Google Scholar 

Grotjahn, D. B. Bifunctional organometallic catalysts involving proton transfer or hydrogen bonding. Chem. Eur. J. 11, 7146–7153 (2005).

Article  CAS  PubMed  Google Scholar 

Tiddens, M. R. & Moret, M.-E. Top. Organomet. Chem. 68, 25–69 (2021).

Elsby, M. R. & Baker, R. T. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 49, 8933–8987 (2020).

Article  CAS  PubMed  Google Scholar 

Milstein, D. Metal–ligand cooperation by aromatization–dearomatization as a tool in single bond activation. Philos. Trans. R. Soc. A 373, 20140189 (2015).

Article  Google Scholar 

Van Der Vlugt, J. I. Cooperative catalysis with first-row late transition metals. Eur. J. Inorg. Chem. 2012, 363–375 (2012).

Grützmacher, H. Cooperating ligands in catalysis. Angew. Chem. Int. Ed. 47, 1814–1818 (2008).

Article  Google Scholar 

He, T. et al. Mechanism of heterolysis of H2 by an unsaturated d8 nickel center: via tetravalent nickel. J. Am. Chem. Soc. 132, 910–911 (2010).

Article  CAS  PubMed  Google Scholar 

Schneider, S., Meiners, J. & Askevold, B. Cooperative aliphatic PNP amido pincer ligands-versatile building blocks for coordination chemistry and catalysis. Eur. J. Inorg. Chem. 2012, 412–429 (2012).

Harman, W. H. & Peters, J. C. Reversible H2 addition across a nickel-borane unit as a promising strategy for catalysis. J. Am. Chem. Soc. 134, 5080–5082 (2012).

Article  CAS  PubMed  Google Scholar 

Harman, W. H., Lin, T. P. & Peters, J. C. A d10 Ni–(H2) adduct as an intermediate in H–H oxidative addition across a Ni–B bond. Angew. Chem. Int. Ed. 53, 1081–1086 (2014).

Article  CAS  Google Scholar 

Karunananda, M. K. & Mankad, N. P. E-selective semi-hydrogenation of alkynes by heterobimetallic catalysis. J. Am. Chem. Soc. 137, 14598–14601 (2015).

Article  CAS  PubMed  Google Scholar 

Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergamini, P. J. & Wasserman, H. J. Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2). J. Am. Chem. Soc. 106, 451–452 (1984).

Article  CAS  Google Scholar 

Bianchini, C. et al. Selective hydrogenation of 1-alkynes to alkenes catalyzed by an iron(II) cis-hydride η2-dihydrogen complex. A case of intramolecular reaction between η2-H2 and-σ-vinyl ligands. Organometallics 11, 138–145 (1992).

Article  CAS  Google Scholar 

Thomas, A., Haake, M., Grevels, F. ‐W. & Bargon, J. In situ NMR investigations of photocatalyzed hydrogenations with parahydrogen in the presence of metal carbonyl compounds of group 6. Angew. Chem. Int. Ed. 33, 755–757 (1994).

Article  Google Scholar 

Joshi, A. M., MacFarlane, K. S. & James, B. R. Kinetics and mechanism of H2-hydrogenation of styrene catalyzed by [RuCl(dppb) (μ-Cl)]2 (dppb = 1,4-bis(dipphenylphosphino)butane). Evidence for hydrogen transfer from a dinuclear molecular hydrogen species. J. Organomet. Chem. 488, 161–167 (1995). .

Kirss, R. U., Eisenschmid, T. C. & Eisenberg, R. Para-hydrogen induced polarization in hydrogenation reactions catalyzed by ruthenium-phosphine complexes. J. Am. Chem. Soc. 110, 8564–8566 (1988).

Article  CAS  Google Scholar 

Jia, G., Ng, W. S. & Lau, C. P. Dihydrogen complex formation and C–C bond cleavage from protonation of Cp*RuH(diene) complexes. Organometallics 17, 4538–4540 (1998).

Article  CAS  Google Scholar 

Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes (Springer, 2001); https://doi.org/10.1007/b113929

Vigalok, A., Kraatz, H., Konstantinovsky, L. & Milstein, D. Evidence for direct trans insertion in a hydrido–olefin rhodium complex—free nitrogen as a trap in a migratory insertion process. Chem. Eur. J 3, 253–260 (1997).

Article  CAS  PubMed  Google Scholar 

Polukeev, A. V. & Wendt, O. F. Iridium pincer complexes with an olefin backbone. Organometallics 34, 4262–4271 (2015).

Article  CAS  Google Scholar 

Polukeev, A. V. & Wendt, O. F. Iridium complexes with aliphatic, non-innocent pincer ligands. J. Organomet. Chem. 867, 33–50 (2018).

Article  CAS  Google Scholar 

Verhoeven, D. G. A. & Moret, M. E. Metal-ligand cooperation at tethered π-ligands. Dalton Trans. 45, 15762–15778 (2016).

Article  CAS  PubMed  Google Scholar 

Comanescu, C. C., Vyushkova, M. & Iluc, V. M. Palladium carbene complexes as persistent radicals. Chem. Sci. 6, 4570–4579 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrett, B. J. & Iluc, V. M. An adaptable chelating diphosphine ligand for the stabilization of palladium and platinum carbenes. Organometallics 36, 730–741 (2017).

Article  CAS  Google Scholar 

Barrett, B. J. & Iluc, V. M. Group 10 metal complexes supported by pincer ligands with an olefinic backbone. Organometallics 33, 2565–2574 (2014).

Article  CAS  Google Scholar 

Barrett, B. J. & Iluc, V. M. Coordination of a hemilabile pincer ligand with an olefinic backbone to mid-to-late transition metals. Inorg. Chem. 53, 7248–7259 (2014).

Article  CAS  PubMed  Google Scholar 

Breitenfeld, J., Vechorkin, O., Corminboeuf, C., Scopelliti, R. & Hu, X. Why are (NN2)Ni pincer complexes active for alkyl–alkyl coupling: β-H elimination is kinetically accessible but thermodynamically uphill. Organometallics 29, 3686–3689 (2010).

Article  CAS  Google Scholar 

Crabtree, R. H. The Organometallic Chemistry of the Transition Metals (John Wiley & Sons, 2014); https://doi.org/10.1002/9781118788301

Michaliszyn, K., Smirnova, E. S., Bucci, A., Martin‐Diaconescu, V. & Lloret Fillol, J. Well‐defined nickel P3C complexes as hydrogenation catalysts of N‐heteroarenes under mild conditions. ChemCatChem 14, e202200039 (2022).

Article  CAS  Google Scholar 

Guihaumé, J., Halbert, S., Eisenstein, O. & Perutz, R. N. Hydrofluoroarylation of alkynes with Ni catalysts. C–H activation via ligand-to-ligand hydrogen transfer, an alternative to oxidative addition. Organometallics 31, 1300–1314 (2012).

Article  Google Scholar 

Perutz, R. N., Sabo-Etienne, S. & Weller, A. S. Metathesis by partner interchange in σ-bond ligands: expanding applications of the σ-CAM mechanism. Angew. Chem. Int. Ed. 61, e202111462 (2022).

Article  CAS  Google Scholar 

Tang, S., Eisenstein, O., Nakao, Y. & Sakaki, S. Aromatic C–H σ-bond activation by Ni0, Pd0 and Pt0 alkene complexes: concerted oxidative addition to metal vs ligand-to-ligand H transfer mechanism. Organometallics 36, 2761–2771 (2017).

Article  CAS  Google Scholar 

Perutz, R. N. & Sabo-Etienne, S. The σ-CAM mechanism: σ complexes as the basis of σ-bond metathesis at late-transition-metal centers. Angew. Chem. Int. Ed. 46, 2578–2592 (2007).

Article  CAS  Google Scholar 

Murugesan, K. et al. Nickel-catalyzed stereodivergent synthesis of E- and Z-alkenes by hydrogenation of alkynes. ChemSusChem 12, 3363–3369 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez, B. L. & Lu, C. C. Rare-earth supported nickel catalysts for alkyne semihydrogenation: chemo- and regioselectivity impacted by the Lewis acidity and size of the support.

Comments (0)

No login
gif